Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Genomics ; 2018: 8581258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356416

RESUMO

Crop-based bioethanol has raised concerns about competition with food and feed supplies, and technologies for second- and third-generation biofuels are still under development. Alternative feedstocks could fill this gap if they can be converted to biofuels using current sugar- or starch-to-ethanol technologies. The aim of this study was to enhance carbohydrate accumulation in transgenic Nicotiana benthamiana by simultaneously expressing the maize Corngrass1 miRNA (Cg1) and E. coli ADP-glucose pyrophosphorylase (glgC), both of which have been reported to enhance carbohydrate accumulation in planta. Our findings revealed that expression of Cg1 alone increased shoot branching, delayed flowering, reduced flower organ size, and induced loss of fertility. These changes were fully restored by coexpressing Escherichia coli glgC. The transcript level of miRNA156 target SQUAMOSA promoter binding-like (SPL) transcription factors was suppressed severely in Cg1-expressing lines as compared to the wild type. Expression of glgC alone or in combination with Cg1 enhanced biomass yield and total sugar content per plant, suggesting the potential of these genes in improving economically important biofuel feedstocks. A possible mechanism of the Cg1 phenotype is discussed. However, a more detailed study including genome-wide transcriptome and metabolic analysis is needed to determine the underlying genetic elements and pathways regulating the observed developmental and metabolic changes.

2.
Sci Rep ; 7(1): 17104, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213132

RESUMO

Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and extracts from transgenic leaves showed higher activity on classic peroxidase substrates than the control. Intriguingly, in situ DypB activation and subsequent saccharification released nearly 200% more fermentable sugars from transgenic lines than controls, which were not explained by variation in initial structural and non-structural carbohydrates and lignin content. Pyrolysis-GC-MS analysis showed more reduction in the level of lignin associated pyrolysates in the transgenic lines than the control primarily when the enzyme is activated prior to pyrolysis, consistent with increased lignin degradation and improved saccharification. The findings reveal for the first time that accumulation and in situ activation of a peroxidase improves biomass digestibility.


Assuntos
Proteínas de Bactérias/metabolismo , Biomassa , Nicotiana/metabolismo , Peroxidases/metabolismo , Actinomycetales/enzimologia , Proteínas de Bactérias/genética , Biocombustíveis , Citosol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Lignina/análise , Lignina/metabolismo , Peroxidases/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Pirólise
3.
Mol Plant Microbe Interact ; 20(4): 380-91, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17427808

RESUMO

Some geminiviruses encode a small protein, AC4, whose role in pathogenesis has only recently attracted attention. A few studies have shown that this protein is involved in pathogenesis and suppresses RNA silencing. Here, using Nicotiana benthamiana, we show that East African cassava mosaic Cameroon virus (EACMCV) AC4 is a pathogenicity determinant and that it suppresses the systemic phase of RNA silencing. Furthermore, confocal imaging analyses show that it binds preferentially to the plasma membrane as well as to cytosolic membranes including the perinucleus but is excluded from the nucleus. A computational examination of the AC4 protein encoded by the EACMCV, a bipartite geminivirus, shows that it encodes a consensus N-myristoylation motif and is likely posttranslationally myristoylated and palmitoylated. Replacement of Gly-2 and Cys-3 (sites of posttranslational attachment of myristic and palmatic acids, respectively) with alanine affected AC4 membrane binding and pathogenesis. Furthermore, replacement of Ile-5, a nonessential myristoylation residue, with alanine did not affect AC4 function. Together, these data indicate that EACMCV AC4 is likely dually acylated at Gly-2 and Cys-3 and that these modifications are intrinsic signals for membrane targeting and pathogenesis. This is the first report of a membrane protein to be involved in pathogenesis and RNA silencing suppression.


Assuntos
Geminiviridae/patogenicidade , Proteínas de Membrana/metabolismo , Ácido Mirístico/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Geminiviridae/química , Geminiviridae/metabolismo , Membranas Intracelulares/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , Proteínas Virais/química , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA