Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116120

RESUMO

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

2.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
4.
Stem Cell Reports ; 17(8): 1788-1798, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905741

RESUMO

To generate sufficient numbers of transplantable hematopoietic stem cells (HSCs) in vitro, a detailed understanding of how this process takes place in vivo is essential. The endothelial-to-hematopoietic transition (EHT), which culminates in the production of the first HSCs, is a highly complex process during which key regulators are switched on and off at precise moments, and that is embedded into a myriad of microenvironmental signals from surrounding cells and tissues. We have previously demonstrated an HSC-supportive function for GATA3 within the sympathetic nervous system and the sub-aortic mesenchyme, but show here that it also plays a cell-intrinsic role during the EHT. It is expressed in hemogenic endothelial cells and early HSC precursors, where its expression correlates with a more quiescent state. Importantly, endothelial-specific deletion of Gata3 shows that it is functionally required for these cells to mature into HSCs, placing GATA3 at the core of the EHT regulatory network.


Assuntos
Hemangioblastos , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Endotélio , Gônadas , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mesoderma , Mesonefro
6.
EMBO J ; 39(24): e104983, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33103827

RESUMO

Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.


Assuntos
Linhagem da Célula/fisiologia , Sistema Hematopoético/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula/genética , Epigenômica , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Camundongos , Proteína Meis1/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Células Precursoras de Linfócitos B , Fatores de Transcrição/genética
7.
Blood ; 136(15): 1735-1747, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32542325

RESUMO

Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.


Assuntos
Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Lisina Acetiltransferase 5/genética , Transativadores/genética , Animais , Biomarcadores , Ciclo Celular , Diferenciação Celular/genética , Dano ao DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Camundongos , Transporte Proteico , Transativadores/metabolismo
8.
Nat Cell Biol ; 22(4): 487-497, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231307

RESUMO

During mouse embryonic development, pluripotent cells rapidly divide and diversify, yet the regulatory programs that define the cell repertoire for each organ remain ill-defined. To delineate comprehensive chromatin landscapes during early organogenesis, we mapped chromatin accessibility in 19,453 single nuclei from mouse embryos at 8.25 days post-fertilization. Identification of cell-type-specific regions of open chromatin pinpointed two TAL1-bound endothelial enhancers, which we validated using transgenic mouse assays. Integrated gene expression and transcription factor motif enrichment analyses highlighted cell-type-specific transcriptional regulators. Subsequent in vivo experiments in zebrafish revealed a role for the ETS factor FEV in endothelial identity downstream of ETV2 (Etsrp in zebrafish). Concerted in vivo validation experiments in mouse and zebrafish thus illustrate how single-cell open chromatin maps, representative of a mammalian embryo, provide access to the regulatory blueprint for mammalian organogenesis.


Assuntos
Cromatina/química , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Animais , Linhagem da Célula/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Embrião de Mamíferos , Embrião não Mamífero , Desenvolvimento Embrionário , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Ligação Proteica , Análise de Célula Única , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682597

RESUMO

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Assuntos
Diferenciação Celular/genética , Ensaios de Triagem em Larga Escala/métodos , Elementos Reguladores de Transcrição/genética , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Bases de Dados Genéticas , Epigênese Genética , Epigenômica , Regulação da Expressão Gênica/genética , Genoma , Macrófagos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
10.
Circ Res ; 124(9): 1337-1349, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30892142

RESUMO

RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS: Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS: The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.


Assuntos
Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Regulador Transcricional ERG/genética
11.
Blood ; 131(21): e1-e11, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29588278

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) maintain the adult blood system, and their dysregulation causes a multitude of diseases. However, the differentiation journeys toward specific hematopoietic lineages remain ill defined, and system-wide disease interpretation remains challenging. Here, we have profiled 44 802 mouse bone marrow HSPCs using single-cell RNA sequencing to provide a comprehensive transcriptional landscape with entry points to 8 different blood lineages (lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, eosinophil, mast cell, and basophil progenitors). We identified a common basophil/mast cell bone marrow progenitor and characterized its molecular profile at the single-cell level. Transcriptional profiling of 13 815 HSPCs from the c-Kit mutant (W41/W41) mouse model revealed the absence of a distinct mast cell lineage entry point, together with global shifts in cell type abundance. Proliferative defects were accompanied by reduced Myc expression. Potential compensatory processes included upregulation of the integrated stress response pathway and downregulation of proapoptotic gene expression in erythroid progenitors, thus providing a template of how large-scale single-cell transcriptomic studies can bridge between molecular phenotypes and quantitative population changes.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-kit/deficiência , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Análise de Célula Única , Transcriptoma
12.
Cell Rep ; 21(8): 2251-2263, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166614

RESUMO

A gradual restriction in lineage potential of multipotent stem/progenitor cells is a hallmark of adult hematopoiesis, but the underlying molecular events governing these processes remain incompletely understood. Here, we identified robust expression of the leukemia-associated transcription factor hepatic leukemia factor (Hlf) in normal multipotent hematopoietic progenitors, which was rapidly downregulated upon differentiation. Interference with its normal downregulation revealed Hlf as a strong negative regulator of lymphoid development, while remaining compatible with myeloid fates. Reciprocally, we observed rapid lymphoid commitment upon reduced Hlf activity. The arising phenotypes resulted from Hlf binding to active enhancers of myeloid-competent cells, transcriptional induction of myeloid, and ablation of lymphoid gene programs, with Hlf induction of nuclear factor I C (Nfic) as a functionally relevant target gene. Thereby, our studies establish Hlf as a key regulator of the earliest lineage-commitment events at the transition from multipotency to lineage-restricted progeny, with implications for both normal and malignant hematopoiesis.


Assuntos
Linhagem da Célula/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Leucemia/metabolismo , Células-Tronco Multipotentes/citologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Linfopoese/fisiologia , Camundongos , Células Mieloides/metabolismo
13.
Dev Cell ; 36(5): 572-87, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26923725

RESUMO

Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula/fisiologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Ligação Proteica/genética , Fatores de Transcrição/metabolismo
14.
Elife ; 5: e11469, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26901438

RESUMO

Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.


Assuntos
Redes Reguladoras de Genes , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Simulação por Computador , Perfilação da Expressão Gênica , Camundongos , Modelos Teóricos , Análise de Sequência de DNA
15.
Blood ; 127(13): e12-23, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26809507

RESUMO

Comprehensive study of transcriptional control processes will be required to enhance our understanding of both normal and malignant hematopoiesis. Modern sequencing technologies have revolutionized our ability to generate genome-scale expression and histone modification profiles, transcription factor (TF)-binding maps, and also comprehensive chromatin-looping information. Many of these technologies, however, require large numbers of cells, and therefore cannot be applied to rare hematopoietic stem/progenitor cell (HSPC) populations. The stem cell factor-dependent multipotent progenitor cell line HPC-7 represents a well-recognized cell line model for HSPCs. Here we report genome-wide maps for 17 TFs, 3 histone modifications, DNase I hypersensitive sites, and high-resolution promoter-enhancer interactomes in HPC-7 cells. Integrated analysis of these complementary data sets revealed TF occupancy patterns of genomic regions involved in promoter-anchored loops. Moreover, preferential associations between pairs of TFs bound at either ends of chromatin loops led to the identification of 4 previously unrecognized protein-protein interactions between key blood stem cell regulators. All HPC-7 data sets are freely available both through standard repositories and a user-friendly Web interface. Together with previously generated genome-wide data sets, this study integrates HPC-7 data into a genomic resource on par with ENCODE tier 1 cell lines and, importantly, is the only current model with comprehensive genome-scale data that is relevant to HSPC biology.


Assuntos
Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Embrião de Mamíferos , Genoma , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição/genética
16.
EMBO J ; 35(6): 580-94, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26702099

RESUMO

Metazoan development is regulated by transcriptional networks, which must respond to extracellular cues including cytokines. The JAK/STAT pathway is a highly conserved regulatory module, activated by many cytokines, in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. However, the mechanisms by which STAT activation modulates lineage-affiliated transcriptional programs are unclear. We demonstrate that in the absence of thrombopoietin (TPO), tyrosine-unphosphorylated STAT5 (uSTAT5) is present in the nucleus where it colocalizes with CTCF and represses a megakaryocytic transcriptional program. TPO-mediated phosphorylation of STAT5 triggers its genome-wide relocation to STAT consensus sites with two distinct transcriptional consequences, loss of a uSTAT5 program that restrains megakaryocytic differentiation and activation of a canonical pSTAT5-driven program which includes regulators of apoptosis and proliferation. Transcriptional repression by uSTAT5 reflects restricted access of the megakaryocytic transcription factor ERG to target genes. These results identify a previously unrecognized mechanism of cytokine-mediated differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Megacariócitos/efeitos dos fármacos , Megacariócitos/fisiologia , Fator de Transcrição STAT5/metabolismo , Trombopoetina/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional
18.
Nucleic Acids Res ; 43(Database issue): D1117-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25270877

RESUMO

CODEX (http://codex.stemcells.cam.ac.uk/) is a user-friendly database for the direct access and interrogation of publicly available next-generation sequencing (NGS) data, specifically aimed at experimental biologists. In an era of multi-centre genomic dataset generation, CODEX provides a single database where these samples are collected, uniformly processed and vetted. The main drive of CODEX is to provide the wider scientific community with instant access to high-quality NGS data, which, irrespective of the publishing laboratory, is directly comparable. CODEX allows users to immediately visualize or download processed datasets, or compare user-generated data against the database's cumulative knowledge-base. CODEX contains four types of NGS experiments: transcription factor chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), histone modification ChIP-Seq, DNase-Seq and RNA-Seq. These are largely encompassed within two specialized repositories, HAEMCODE and ESCODE, which are focused on haematopoiesis and embryonic stem cell samples, respectively. To date, CODEX contains over 1000 samples, including 221 unique TFs and 93 unique cell types. CODEX therefore provides one of the most complete resources of publicly available NGS data for the direct interrogation of transcriptional programmes that regulate cellular identity and fate in the context of mammalian development, homeostasis and disease.


Assuntos
Bases de Dados Genéticas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Imunoprecipitação da Cromatina , Hematopoese/genética , Histonas/metabolismo , Humanos , Internet , Camundongos , Análise de Sequência de DNA , Análise de Sequência de RNA , Software
19.
Development ; 141(20): 4018-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252941

RESUMO

Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células-Tronco Hematopoéticas , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transgenes , Xanthomonas/metabolismo
20.
Cell Stem Cell ; 14(5): 673-88, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24792119

RESUMO

To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-ß signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.


Assuntos
Epigenômica/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Imunoprecipitação da Cromatina , Masculino , Camundongos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA