Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(13): 2538-2551, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343227

RESUMO

Quantitative magnetic resonance imaging is one of the few available methods for noninvasive diagnosis of degenerative changes in articular cartilage. The clinical use of the imaging data is limited by the lack of a clear association between structural changes at the molecular level and the measured magnetic relaxation times. In anisotropic, collagen-containing tissues, such as articular cartilage, the orientation dependency of nuclear magnetic relaxation can obscure the content of the images. Conversely, if the molecular origin of the phenomenon would be better understood, it would provide opportunities for diagnostics as well as treatment planning of degenerative changes in these tissues. We study the magnitude and orientation dependence of the nuclear magnetic relaxation due to dipole-dipole coupling of water protons in anisotropic, collagenous structures. The water-collagen interactions are modeled with molecular dynamics simulations of a small collagen-like peptide dissolved in water. We find that in the vicinity of the collagen-like peptide, the dipolar relaxation of water hydrogen nuclei is anisotropic, which can result in orientation-dependent relaxation times if the water remains close to the peptide. However, the orientation-dependency of the relaxation is different from the commonly observed magic-angle phenomenon in articular cartilage MRI.


Assuntos
Cartilagem Articular , Prótons , Cartilagem Articular/química , Cartilagem Articular/diagnóstico por imagem , Colágeno/química , Imageamento por Ressonância Magnética/métodos , Peptídeos , Água/química
2.
J Orthop Res ; 39(4): 861-870, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32543737

RESUMO

Quantitative magnetic resonance (MR) relaxation parameters demonstrate varying sensitivity to the orientation of the ordered tissues in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in cadaveric human cartilage with varying degree of natural degeneration, and compared with biomechanical testing, histological scoring, and quantitative histology. Twelve patellar cartilage samples were imaged at 9.4 T MRI with multiple relaxation parameters, including T1 , T2 , CW - T1ρ , and adiabatic T1ρ , at three different orientations with respect to the main magnetic field. Anisotropy of the relaxation parameters was quantified, and the results were compared with the reference measurements and between samples of different histological Osteoarthritis Research Society International (OARSI) grades. T2 and CW - T1ρ at 400 Hz spin-lock demonstrated the clearest anisotropy patterns. Radial zone anisotropy for T2 was significantly higher for samples with OARSI grade 2 than for grade 4. The proteoglycan content (measured as optical density) correlated with the radial zone MRI orientation anisotropy for T2 (r = 0.818) and CW - T1ρ with 400 Hz spin-lock (r = 0.650). Orientation anisotropy of MRI parameters altered with progressing cartilage degeneration. This is associated with differences in the integrity of the collagen fiber network, but it also seems to be related to the proteoglycan content of the cartilage. Samples with advanced OA had great variation in all biomechanical and histological properties and exhibited more variation in MRI orientation anisotropy than the less degenerated samples. Understanding the background of relaxation anisotropy on a molecular level would help to develop new MRI contrasts and improve the application of previously established quantitative relaxation contrasts.


Assuntos
Doenças das Cartilagens/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Osteoartrite/diagnóstico por imagem , Anisotropia , Fenômenos Biomecânicos , Cadáver , Doenças das Cartilagens/fisiopatologia , Cartilagem Articular/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Orientação , Osteoartrite/fisiopatologia , Patela , Proteoglicanas/química
3.
J Org Chem ; 78(13): 6721-34, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23750919

RESUMO

Selective binding of the phosphate-substituted molecular tweezer 1a to protein lysine residues was suggested to explain the inhibition of certain enzymes and the aberrant aggregation of amyloid petide Aß42 or α-synuclein, which are assumed to be responsible for Alzheimer's and Parkinson's disease, respectively. In this work we systematically investigated the binding of four water-soluble tweezers 1a-d (substituted by phosphate, methanephosphonate, sulfate, or O-methylenecarboxylate groups) to amino acids and peptides containing lysine or arginine residues by using fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry (ITC). The comparison of the experimental results with theoretical data obtained by a combination of QM/MM and ab initio(1)H NMR shift calculations provides clear evidence that the tweezers 1a-c bind the amino acid or peptide guest molecules by threading the lysine or arginine side chain through the tweezers' cavity, whereas in the case of 1d the guest molecule is preferentially positioned outside the tweezer's cavity. Attractive ionic, CH-π, and hydrophobic interactions are here the major binding forces. The combination of experiment and theory provides deep insight into the host-guest binding modes, a prerequisite to understanding the exciting influence of these tweezers on the aggregation of proteins and the activity of enzymes.


Assuntos
Hidroquinonas/química , Teoria Quântica , Aminoácidos/química , Ânions/química , Calorimetria , Dimerização , Fluorometria , Imageamento por Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Organofosfonatos/química , Peptídeos/química , Fosfatos/química , Prótons , Solventes , Sulfatos/química , Termodinâmica , Titulometria
4.
Phys Chem Chem Phys ; 13(30): 13704-8, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21709898

RESUMO

Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA