Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1422869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948514

RESUMO

Objectives: Obesity impairs bone marrow (BM) glucose metabolism. Adult BM constitutes mostly of adipocytes that respond to changes in energy metabolism by modulating their morphology and number. Here we evaluated whether diet or exercise intervention could improve the high-fat diet (HFD) associated impairment in BM glucose uptake (BMGU) and whether this associates with the morphology of BM adipocytes (BMAds) in rats. Methods: Eight-week-old male Sprague-Dawley rats were fed ad libitum either HFD or chow diet for 24 weeks. Additionally after 12 weeks, HFD-fed rats switched either to chow diet, voluntary intermittent running exercise, or both for another 12 weeks. BMAd morphology was assessed by perilipin-1 immunofluorescence staining in formalin-fixed paraffin-embedded tibial sections. Insulin-stimulated sternal and humeral BMGU were measured using [18F]FDG-PET/CT. Tibial microarchitecture and mineral density were measured with microCT. Results: HFD rats had significantly higher whole-body fat percentage compared to the chow group (17% vs 13%, respectively; p = 0.004) and larger median size of BMAds in the proximal tibia (815 µm2 vs 592 µm2, respectively; p = 0.03) but not in the distal tibia. Switch to chow diet combined with running exercise normalized whole-body fat percentage (p < 0.001) but not the BMAd size. At 32 weeks of age, there was no significant difference in insulin-stimulated BMGU between the study groups. However, BMGU was significantly higher in sternum compared to humerus (p < 0.001) and higher in 8-week-old compared to 32-week-old rats (p < 0.001). BMAd size in proximal tibia correlated positively with whole-body fat percentage (r = 0.48, p = 0.005) and negatively with humeral BMGU (r = -0.63, p = 0.02). HFD significantly reduced trabecular number (p < 0.001) compared to the chow group. Switch to chow diet reversed this as the trabecular number was significantly higher (p = 0.008) than in the HFD group. Conclusion: In this study we showed that insulin-stimulated BMGU is age- and site-dependent. BMGU was not affected by the study interventions. HFD increased whole-body fat percentage and the size of BMAds in proximal tibia. Switching from HFD to a chow diet and running exercise improved glucose homeostasis and normalized the HFD-induced increase in body fat but not the hypertrophy of BMAds.


Assuntos
Adiposidade , Medula Óssea , Dieta Hiperlipídica , Glucose , Obesidade , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Dieta Hiperlipídica/efeitos adversos , Medula Óssea/metabolismo , Glucose/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo
2.
Diabetes Obes Metab ; 26(1): 251-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818602

RESUMO

AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.


Assuntos
Medula Óssea , Resistência à Insulina , Humanos , Feminino , Adulto , Obesidade , Exercício Físico , Sobrepeso , Densidade Óssea
3.
Int J Biomed Imaging ; 2023: 3819587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089593

RESUMO

Clustering time activity curves of PET images have been used to separate clinically relevant areas of the brain or tumours. However, PET image segmentation in multiorgan level is much less studied due to the available total-body data being limited to animal studies. Now, the new PET scanners providing the opportunity to acquire total-body PET scans also from humans are becoming more common, which opens plenty of new clinically interesting opportunities. Therefore, organ-level segmentation of PET images has important applications, yet it lacks sufficient research. In this proof of concept study, we evaluate if the previously used segmentation approaches are suitable for segmenting dynamic human total-body PET images in organ level. Our focus is on general-purpose unsupervised methods that are independent of external data and can be used for all tracers, organisms, and health conditions. Additional anatomical image modalities, such as CT or MRI, are not used, but the segmentation is done purely based on the dynamic PET images. The tested methods are commonly used building blocks of the more sophisticated methods rather than final methods as such, and our goal is to evaluate if these basic tools are suited for the arising human total-body PET image segmentation. First, we excluded methods that were computationally too demanding for the large datasets from human total-body PET scanners. These criteria filtered out most of the commonly used approaches, leaving only two clustering methods, k-means and Gaussian mixture model (GMM), for further analyses. We combined k-means with two different preprocessing approaches, namely, principal component analysis (PCA) and independent component analysis (ICA). Then, we selected a suitable number of clusters using 10 images. Finally, we tested how well the usable approaches segment the remaining PET images in organ level, highlight the best approaches together with their limitations, and discuss how further research could tackle the observed shortcomings. In this study, we utilised 40 total-body [18F] fluorodeoxyglucose PET images of rats to mimic the coming large human PET images and a few actual human total-body images to ensure that our conclusions from the rat data generalise to the human data. Our results show that ICA combined with k-means has weaker performance than the other two computationally usable approaches and that certain organs are easier to segment than others. While GMM performed sufficiently, it was by far the slowest one among the tested approaches, making k-means combined with PCA the most promising candidate for further development. However, even with the best methods, the mean Jaccard index was slightly below 0.5 for the easiest tested organ and below 0.2 for the most challenging organ. Thus, we conclude that there is a lack of accurate and computationally light general-purpose segmentation method that can analyse dynamic total-body PET images.

4.
Nutr Diabetes ; 11(1): 5, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414377

RESUMO

BACKGROUND: Short-term exercise training programs that consist of moderate intensity endurance training or high intensity interval training have become popular choices for healthy lifestyle modifications, with as little as two weeks of training being shown to improve cardiorespiratory fitness and whole-body glucose metabolism. An emerging concept in exercise biology is that exercise stimulates the release of cytokines and other factors into the blood that contribute to the beneficial effects of exercise on metabolism, but whether these factors behave similarly in response to moderate and high intensity short term training is not known. Here, we determined the effects of two short-term exercise training programs on the concentrations of select secreted cytokines and Klotho, a protein involved in anti-aging. METHODS: Healthy, sedentary men (n = 22) were randomized to moderate intensity training (MIT) or sprint intensity training (SIT) treatment groups. SIT consisted of 6 sessions over 2 weeks of 6 × 30 s all out cycle ergometer sprints with 4 min of recovery between sprints. MIT consisted of 6 sessions over 2 weeks of cycle ergometer exercise at 60% VO2peak, gradually increasing in duration from 40 to 60 min. Blood was taken before the intervention and 48 h after the last training session, and glucose uptake was measured using [18F]FDG-PET/CT scanning. Cytokines were measured by multiplex and Klotho concentrations by ELISA. RESULTS: Both training protocols similarly increased VO2peak and decreased fat percentage and visceral fat (P < 0.05). MIT and SIT training programs both reduced the concentrations of IL-6, Hepatocyte Growth Factor (HGF) and Leptin. Interestingly, MIT, but not SIT increased monocyte chemoattractant protein-1 (MCP-1) concentrations, an exercise-induced cytokine, as well as Klotho concentrations. CONCLUSION: Short-term exercise training at markedly different intensities similarly improves cardiovascular fitness but results in intensity-specific changes in cytokine responses to exercise.


Assuntos
Citocinas/sangue , Exercício Físico , Glucuronidase/sangue , Adulto , Composição Corporal , Aptidão Cardiorrespiratória , Quimiocina CCL2/sangue , Treino Aeróbico/métodos , Glucose/metabolismo , Estilo de Vida Saudável , Fator de Crescimento de Hepatócito/sangue , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Interleucina-6/sangue , Proteínas Klotho , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
5.
PeerJ ; 8: e10442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304658

RESUMO

We studied the impact of bariatric surgery on the intestinal microbiota of morbidly obese study subjects. A total of 13 morbidly obese women (five of which had type 2 diabetes) and 14 healthy age- and gender-matched controls were recruited and the microbiota composition of fecal samples were determined by using a phylogenetic microarray. Sampling of the patients took place just one month before and 6 months after the operation. Within six months after bariatric surgery, the obese subjects had lost on average a quarter of their weight whereas four of the five of the diabetic subjects were in remission. Bariatric surgery was associated with an increased microbial community richness and Bacteroidetes/Firmicutes ratio. In addition, we observed an increased relative abundance of facultative anaerobes, such as Streptococcus spp., and a reduction in specific butyrate-producing Firmicutes. The observed postoperative alterations in intestinal microbiota reflect adaptation to the changing conditions in the gastrointestinal tract, such as energy restriction and the inability to process fiber-rich foods after bariatric surgery.

6.
Nutr Metab Cardiovasc Dis ; 30(12): 2363-2371, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32919861

RESUMO

BACKGROUND AND AIMS: Computed tomography (CT)-derived adipose tissue radiodensity represents a potential noninvasive surrogate marker for lipid deposition and obesity-related metabolic disease risk. We studied the effects of bariatric surgery on CT-derived adipose radiodensities in abdominal and femoral areas and their relationships to circulating metabolites in morbidly obese patients. METHODS AND RESULTS: We examined 23 morbidly obese women who underwent CT imaging before and 6 months after bariatric surgery. Fifteen healthy non-obese women served as controls. Radiodensities of the abdominal subcutaneous (SAT) and visceral adipose tissue (VAT), and the femoral SAT, adipose tissue masses were measured in all participants. Circulating metabolites were measured by NMR. At baseline, radiodensities of abdominal fat depots were lower in the obese patients as compared to the controls. Surprisingly, radiodensity of femoral SAT was higher in the obese as compared to the controls. In the abdominal SAT depot, radiodensity strongly correlated with SAT mass (r = -0.72, p < 0.001). After surgery, the radiodensities of abdominal fat increased significantly (both p < 0.01), while femoral SAT radiodensity remained unchanged. Circulating ApoB/ApoA-I, leucine, valine, and GlycA decreased, while glycine levels significantly increased as compared to pre-surgical values (all p < 0.05). The increase in abdominal fat radiodensity correlated negatively with the decreased levels of ApoB/ApoA-I ratio, leucine and GlycA (all p < 0.05). The increase in abdominal SAT density was significantly correlated with the decrease in the fat depot mass (r = -0.66, p = 0.002). CONCLUSION: Higher lipid content in abdominal fat depots, and lower content in femoral subcutaneous fat, constitute prominent pathophysiological features in morbid obesity. Further studies are needed to clarify the role of non-abdominal subcutaneous fat in the pathogenesis of obesity. CLINICAL TRIAL REGISTRATION NUMBER: NCT01373892.


Assuntos
Adiposidade , Metabolismo Energético , Gastrectomia , Derivação Gástrica , Tomografia Computadorizada Multidetectores , Obesidade Mórbida/cirurgia , Gordura Subcutânea Abdominal/diagnóstico por imagem , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/diagnóstico por imagem , Obesidade Mórbida/fisiopatologia , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
7.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32785654

RESUMO

CONTEXT: Exercise training improves bone mineral density, but little is known about the effects of training on bone marrow (BM) metabolism. BM insulin sensitivity has been suggested to play an important role in bone health and whole-body insulin sensitivity. OBJECTIVE: To study the effects of exercise training on BM metabolism. DESIGN: Randomized controlled trial. SETTING: Clinical research center. PARTICIPANTS: Sedentary healthy (n = 28, 40-55 years, all males) and insulin resistant (IR) subjects (n = 26, 43-55 years, males/females 16/10). INTERVENTION: Two weeks of sprint interval training or moderate-intensity continuous training. MAIN OUTCOME MEASURES: We measured femoral, lumbar, and thoracic BM insulin-stimulated glucose uptake (GU) and fasting free fatty acid uptake (FFAU) using positron-emission tomography and bone turnover markers from plasma. RESULTS: At baseline, GU was highest in lumbar, followed by thoracic, and lowest in femoral BM (all Ps < 0.0001). FFAU was higher in lumbar and thoracic than femoral BM (both Ps < 0.0001). BM FFAU and femoral BM GU were higher in healthy compared to IR men and in females compared to males (all Ps < 0.05). Training increased femoral BM GU similarly in all groups and decreased lumbar BM FFAU in males (all Ps < 0.05). Osteocalcin and PINP were lower in IR than healthy men and correlated positively with femoral BM GU and glycemic status (all Ps < 0.05). CONCLUSIONS: BM metabolism differs regarding anatomical location. Short-term training improves BM GU and FFAU in healthy and IR subjects. Bone turnover rate is decreased in insulin resistance and associates positively with BM metabolism and glycemic control. CLINICAL TRIAL REGISTRATION NUMBER: NCT01344928.


Assuntos
Medula Óssea/metabolismo , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Comportamento Sedentário
8.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311037

RESUMO

CONTEXT: Bone marrow (BM) in adult long bones is rich in adipose tissue, but the functions of BM adipocytes are largely unknown. We set out to elucidate the metabolic and molecular characteristics of BM adipose tissue (BMAT) in humans. OBJECTIVE: Our aim was to determine if BMAT is an insulin-sensitive tissue, and whether the insulin sensitivity is altered in obesity or type 2 diabetes (T2DM). DESIGN: This was a cross-sectional and longitudinal study. SETTING: The study was conducted in a clinical research center. PATIENTS OR OTHER PARTICIPANTS: Bone marrow adipose tissue glucose uptake (GU) was assessed in 23 morbidly obese subjects (9 with T2DM) and 9 healthy controls with normal body weight. In addition, GU was assessed in another 11 controls during cold exposure. Bone marrow adipose tissue samples for molecular analyses were collected from non-DM patients undergoing knee arthroplasty. INTERVENTION(S): Obese subjects were assessed before and 6 months after bariatric surgery and controls at 1 time point. MAIN OUTCOME MEASURE: We used positron emission tomography imaging with 2-[18F]fluoro-2-deoxy-D-glucose tracer to characterize GU in femoral and vertebral BMAT. Bone marrow adipose tissue molecular profile was assessed using quantitative RT-PCR. RESULTS: Insulin enhances GU in human BMAT. Femoral BMAT insulin sensitivity was impaired in obese patients with T2DM compared to controls, but it improved after bariatric surgery. Furthermore, gene expression analysis revealed that BMAT was distinct from brown and white adipose tissue. CONCLUSIONS: Bone marrow adipose tissue is a metabolically active, insulin-sensitive and molecularly distinct fat depot that may play a role in whole body energy metabolism.


Assuntos
Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Resistência à Insulina , Insulina/metabolismo , Adipócitos/metabolismo , Adulto , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons
9.
Diabetes Obes Metab ; 22(7): 1074-1082, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32052537

RESUMO

AIM: To investigate whether there are differences in brain fatty acid uptake (BFAU) between morbidly obese and lean subjects, and the effect of weight loss following bariatric surgery. MATERIALS AND METHODS: We measured BFAU with 14(R, S)-[18 F]fluoro-6-thia-heptadecanoic acid and positron emission tomography in 24 morbidly obese and 14 lean women. Obese subjects were restudied 6 months after bariatric surgery. We also assessed whether there was hypothalamic neuroinflammation in the obese subjects using fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging. RESULTS: Obese subjects had a higher BFAU than lean subjects (1.12 [0.61] vs. 0.72 [0.50] µmol 100 g-1 min-1 , P = 0.0002), driven by higher fatty acid uptake availability. BFAU correlated positively with BMI (P = 0.006, r = 0.48), whole body fatty acid oxidation (P = 0.006, r = 0.47) and leptin levels (P = 0.001, r = 0.54). When BFAU, leptin and body mass index (BMI) were included in the same model, the association between BFAU and leptin was the strongest. BFAU did not correlate with FLAIR-derived estimates of hypothalamic inflammation. Six months after bariatric surgery, obese subjects achieved significant weight loss (-10 units of BMI). BFAU was not significantly changed (1.12 [0.61] vs. 1.09 [0.39] µmol 100 g-1 min-1 , ns), probably because of the ongoing catabolic state. Finally, baseline BFAU predicted worse plasma glucose levels at 2 years of follow-up. CONCLUSIONS: BFAU is increased in morbidly obese compared with lean subjects, and is unchanged 6 months after bariatric surgery. Baseline BFAU predicts worse plasma glucose levels at follow-up, supporting the notion that the brain participates in the control of whole-body homeostasis.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Encéfalo/diagnóstico por imagem , Ácidos Graxos não Esterificados , Feminino , Humanos , Obesidade Mórbida/diagnóstico por imagem , Obesidade Mórbida/cirurgia , Tomografia por Emissão de Pósitrons
10.
Med Sci Sports Exerc ; 52(1): 94-104, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425383

RESUMO

INTRODUCTION: Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate-intensity continuous training (MICT) on intestinal metabolism and microbiota in subjects with insulin resistance. METHODS: Twenty-six, sedentary subjects (prediabetic, n = 9; type 2 diabetes, n = 17; age, 49 [SD, 4] yr; body mass index, 30.5 [SD, 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using positron emission tomography. Gut microbiota composition was analyzed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit. RESULTS: V˙O2peak improved only after SIT (P = 0.01). Both training modes reduced systematic and intestinal inflammatory markers (tumor necrosis factor-α, lipopolysaccharide binding protein) (time P < 0.05). Training modified microbiota profile by increasing Bacteroidetes phylum (time P = 0.03) and decreasing Firmicutes/Bacteroidetes ratio (time P = 0.04). Moreover, there was a decrease in Clostridium genus (time P = 0.04) and Blautia (time P = 0.051). Only MICT decreased jejunal FAU (P = 0.02). Training had no significant effect on intestinal GU. Colonic GU associated positively with Bacteroidetes and inversely with Firmicutes phylum, ratio Firmicutes/Bacteroidetes and Blautia genus. CONCLUSIONS: Intestinal substrate uptake associates with gut microbiota composition and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Endotoxemia/metabolismo , Endotoxemia/prevenção & controle , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Condicionamento Físico Humano/métodos , Estado Pré-Diabético/metabolismo , Proteínas de Fase Aguda/metabolismo , Biomarcadores/metabolismo , Índice de Massa Corporal , Proteínas de Transporte/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Consumo de Oxigênio/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Am J Physiol Endocrinol Metab ; 317(5): E871-E878, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550182

RESUMO

Human studies of renal hemodynamics and metabolism in obesity are insufficient. We hypothesized that renal perfusion and renal free fatty acid (FFA) uptake are higher in subjects with morbid obesity compared with lean subjects and that they both decrease after bariatric surgery. Cortical and medullary hemodynamics and metabolism were measured in 23 morbidly obese women and 15 age- and sex-matched nonobese controls by PET scanning of [15O]-H2O (perfusion) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoate (FFA uptake). Kidney volume and radiodensity were measured by computed tomography, cardiac output by MRI. Obese subjects were re-studied 6 mo after bariatric surgery. Obese subjects had higher renal volume but lower radiodensity, suggesting accumulation of water and/or lipid. Both cardiac output and estimated glomerular filtration rate (eGFR) were increased by ~25% in the obese. Total renal blood flow was higher in the obese [885 (317) (expressed as median and interquartile range) vs. 749 (300) (expressed as means and SD) ml/min of controls, P = 0.049]. In both groups, regional blood perfusion was higher in the cortex than medulla; in either region, FFA uptake was ~50% higher in the obese as a consequence of higher circulating FFA levels. Following weight loss (26 ± 8 kg), total renal blood flow was reduced (P = 0.006). Renal volume, eGFR, cortical and medullary FFA uptake were decreased but not fully normalized. Obesity is associated with renal structural, hemodynamic, and metabolic changes. Six months after bariatric surgery, the hemodynamic changes are reversed and the structural changes are improved. On the contrary, renal FFA uptake remains increased, driven by high substrate availability.


Assuntos
Ácidos Graxos/metabolismo , Rim/metabolismo , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Circulação Renal , Redução de Peso , Adulto , Cirurgia Bariátrica , Feminino , Taxa de Filtração Glomerular , Hemodinâmica , Humanos , Rim/diagnóstico por imagem , Córtex Renal/irrigação sanguínea , Córtex Renal/diagnóstico por imagem , Córtex Renal/metabolismo , Medula Renal/irrigação sanguínea , Medula Renal/diagnóstico por imagem , Medula Renal/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Tomografia Computadorizada por Raios X
12.
Nat Metab ; 1(2): 291-303, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31032475

RESUMO

Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-ß2 (TGF-ß2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-ß2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-ß2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2-/- mice, into sedentary mice improves glucose tolerance. TGF-ß2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-ß2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-ß2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-ß2-signaling cycle.


Assuntos
Adipocinas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Condicionamento Físico Animal , Fator de Crescimento Transformador beta2/metabolismo , Tecido Adiposo/metabolismo , Animais , Camundongos
13.
Int J Obes (Lond) ; 43(9): 1675-1680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30518825

RESUMO

STUDY AIM: Retinal microvasculature changes reflect systemic small vessel damage from obesity. The impact of bariatric surgery induced weight loss on the microvasculature is relatively unknown. We hypothesized that weight loss following bariatric surgery would be associated with improved structural changes in the retinal microvasculature, reflecting an overall improvement in microvascular health. METHODS: The study included 22 obese subjects scheduled for bariatric surgery (laparoscopic Roux-en-Y gastric bypass or a sleeve gastrectomy) and 15 lean, age-matched controls. Ophthalmic examination, including fundus photography, was performed at baseline and 6-months. Retinal microvasculature caliber was analysed quantitatively using a semi-automated computer program and summarized as central retinal artery equivalent (CRAE) and venular equivalent (CRVE). RESULTS: Mean weight loss at 6 months was 26.1 kg ± 8 kg in the bariatric surgery group. Retinal artery caliber increased (136.0 ± 1.4 to 141.4 ± 1.4 µm, p = 0.013) and venular caliber decreased (202.9 ± 1.9 to 197.3 ± 1.9 µm, p = 0.046) in the bariatric surgery group by 6 months, with no change in arteriolar (136.6 ± 1.1 to 134.5 ± 1.2, p = 0.222) or venular (195.1 ± 2.1 to 193.3 ± 2.2, p = 0.550) caliber in the control group. The arteriolar to venular ratio increased in the bariatric surgery group, with no change in the control group at 6 months. CONCLUSIONS: The findings suggest obesity-related microvascular changes are reversible after bariatric surgery-induced weight loss. The capacity for the retinal microvasculature to improve following bariatric surgery suggests plasticity of the human microvasculature early in the disease course.


Assuntos
Cirurgia Bariátrica/estatística & dados numéricos , Microvasos/patologia , Obesidade Mórbida , Vasos Retinianos/patologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Resultado do Tratamento , Redução de Peso/fisiologia
14.
Diabetes Obes Metab ; 21(2): 218-226, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30098134

RESUMO

AIMS: To investigate further the finding that insulin enhances brain glucose uptake (BGU) in obese but not in lean people by combining BGU with measures of endogenous glucose production (EGP), and to explore the associations between insulin-stimulated BGU and peripheral markers, such as metabolites and inflammatory markers. MATERIALS AND METHODS: A total of 20 morbidly obese individuals and 12 lean controls were recruited from the larger randomized controlled SLEEVEPASS study. All participants were studied under fasting and euglycaemic hyperinsulinaemic conditions using fluorodeoxyglucose-positron emission tomography. Obese participants were re-evaluated 6 months after bariatric surgery and were followed-up for ~3 years. RESULTS: In obese participants, we found a positive association between BGU and EGP during insulin stimulation. Across all participants, insulin-stimulated BGU was associated positively with systemic inflammatory markers and plasma levels of leucine and phenylalanine. Six months after bariatric surgery, the obese participants had achieved significant weight loss. Although insulin-stimulated BGU was decreased postoperatively, the association between BGU and EGP during insulin stimulation persisted. Moreover, high insulin-stimulated BGU at baseline predicted smaller improvement in fasting plasma glucose at 2 and 3 years of follow-up. CONCLUSIONS: Our findings suggest the presence of a brain-liver axis in morbidly obese individuals, which persists postoperatively. This axis might contribute to further deterioration of glucose homeostasis.


Assuntos
Cirurgia Bariátrica , Encéfalo/metabolismo , Glucose/metabolismo , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Adulto , Cirurgia Bariátrica/métodos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Seguimentos , Gastrectomia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/diagnóstico , Prognóstico , Resultado do Tratamento , Redução de Peso/fisiologia
15.
Med Sci Sports Exerc ; 51(2): 278-287, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247434

RESUMO

PURPOSE: Bariatric surgery is considered as an effective therapeutic strategy for weight loss in severe obesity. Remission of type 2 diabetes is often achieved after the surgery. We investigated whether increase in self-reported habitual physical activity associates with improved skeletal muscle insulin sensitivity and reduction of fat depots after bariatric surgery. METHODS: We assessed self-reported habitual physical activity using Baecke questionnaire in 18 diabetic and 28 nondiabetic patients with morbid obesity (median age, 46 yr; body mass index, 42.0 kg·m) before and 6 months after bariatric surgery operation. Insulin-stimulated femoral muscle glucose uptake was measured using fluorodeoxyglucose positron emission tomography method during hyperinsulinemia. In addition, abdominal subcutaneous and visceral fat masses were quantified using magnetic resonance imaging and liver fat content using magnetic resonance spectroscopy. Also, serum proinflammatory cytokines were measured. RESULTS: Patients lost on average 22.9% of weight during the follow-up period of 6 months (P < 0.001). Self-reported habitual physical activity level increased (P = 0.017). Improvement in skeletal muscle insulin sensitivity was observed only in those patients who reported increase in their physical activity postoperatively (P = 0.018). The increase in self-reported physical activity associated with the loss of visceral fat mass (P = 0.029). Postoperative self-reported physical activity correlated also positively with postoperative hepatic insulin clearance (P = 0.02) and tended to correlate negatively with liver fat content (P = 0.076). Postoperative self-reported physical activity also correlated negatively with serum TNFα, methyl-accepting chemotaxis protein and interleukin 6 levels. CONCLUSIONS: Self-reported physical activity is associated with reversal of skeletal muscle insulin resistance after bariatric surgery as well as with the loss of visceral fat content and improved postoperative metabolism in bariatric surgery patients. TRIAL REGISTRATION: Clinicaltrials.gov, NCT00793143 (SLEEVEPASS), NCT01373892 (SLEEVEPET2).


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Adulto , Glicemia/metabolismo , Distribuição da Gordura Corporal , Citocinas/sangue , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico , Feminino , Humanos , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Autorrelato
16.
Acta Ophthalmol ; 96(8): 849-852, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238690

RESUMO

PURPOSE: Study purpose was to investigate the effects of bariatric surgery on intraocular pressure (IOP) and other ophthalmic parameters in a prospective observational follow-up study. METHODS: Ophthalmic examination was performed on 22 obese women before and 6 months after bariatric surgery. A control group of 15 non-obese age-matched women were studied twice 6 months apart. IOP was measured with the Goldmann applanation tonometer (GAT) and the Pascal dynamic contour tonometer (PDCT). None of the subjects had glaucoma. RESULTS: Average weight loss 6 months after bariatric surgery was 25 ±8 kg, (p < 0.05). Visual acuity (VA), pachymetry and systolic as well as diastolic blood pressures did not differ between the obese and control groups and no change between the visits was detected. At baseline, IOP was significantly higher in the obese group than in the controls (16.6 ± 3.0 mmHg GAT and 18.1 ± 2.2 mmHg PDCT compared with 14.3 ± 1.5 mmHg GAT and 16.5 ± 1.9 mmHg PDCT respectively). After bariatric surgery, IOP was significantly lower (15.2 ± 2.7 mmHg GAT and 16.5 ± 2.0 mmHg PDCT, p < 0.05) and no significant difference was detected between the operated and control groups. In the whole data at baseline, IOP correlated with weight, body mass index, waist circumference, body fat per cent and systolic blood pressure values. CONCLUSION: Intraocular pressure (IOP) is significantly higher in obese women than in non-obese age-matched controls. Obese subjects had a decrease in IOP after bariatric surgery with no change in IOP in the control group. This change in obese group may be related to weight loss. Different measures of obesity correlated with IOP at baseline.


Assuntos
Cirurgia Bariátrica , Pressão Intraocular/fisiologia , Obesidade/cirurgia , Adolescente , Adulto , Peso Corporal , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Período Pós-Operatório , Estudos Prospectivos , Tonometria Ocular , Adulto Jovem
17.
Diabetes Obes Metab ; 20(5): 1280-1288, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29377423

RESUMO

OBJECTIVE: We aimed to investigate the effect of bariatric surgery on lipid metabolism in supraclavicular brown adipose tissue in morbidly obese women. We hypothesized that lipid metabolism improves after surgery-induced weight loss. MATERIALS AND METHODS: A total of 23 morbidly obese women (BMI, 42.1 ± 4.2 kg/m2 ; age, 43.8 ± 9.8 years) were assessed before and 6 months after bariatric surgery and 15 age- and sex-matched controls (22.6 ± 2.8 kg/m2 ) were assessed once. In the supraclavicular fat depot, fractional (FUR) and NEFA uptake rates were measured with 18 F-FTHA-PET. We assessed tissue morphology (triglyceride content) using computed tomography (CT)-radiodensity (in Hounsfield Units[HU]) and the proportion of fat with high density (sBAT [%]) in the entire supraclavicular fat depot. RESULTS: The supraclavicular fractional uptake rate was lower in obese women compared to controls (0.0055 ± 0.0035 vs 0.0161 ± 0.0177 1/min, P = .001). Both FUR (to 0.0074 ± 0.0035 1/min, P = .01) and NEFA uptake rates (to 0.50 ± 0.50 µmol/100 g/min, P = .001) increased after surgery. Compared to controls, obese women had lower CT-radiodensity (-101.2 ± 10.1 vs -82.5 ± 5.8 HU, P < .001) and sBAT (43.4 ± 8.4% vs 64.5 ± 12.4%, P < .001). After surgery, CT-radiodensity increased (to -82.5 ± 9.6 HU, P < .001), signifying decreased triglyceride content and sBAT improved (to 58.0 ± 10.7%, P < .001), indicating an increased proportion of brown fat. The change in tissue morphology, reflected as increase in CT-radiodensity and sBAT (%), was associated with a decrease in adiposity indices and an increase in whole-body insulin sensitivity. CONCLUSIONS: A decrease in triglyceride content, coupled with the increased proportion of brown adipose tissue in the supraclavicular fat depot, may play a role in the improvement of whole-body insulin sensitivity observed in morbidly obese women after surgery-induced weight loss.


Assuntos
Tecido Adiposo Marrom/metabolismo , Cirurgia Bariátrica , Metabolismo Energético , Resistência à Insulina , Metabolismo dos Lipídeos , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Absorção Fisiológica , Tecido Adiposo Marrom/diagnóstico por imagem , Adiposidade , Adulto , Índice de Massa Corporal , Clavícula , Ácidos Graxos não Esterificados/metabolismo , Feminino , Radioisótopos de Flúor , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Obesidade Mórbida/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Triglicerídeos/metabolismo , Redução de Peso , Imagem Corporal Total
18.
Diabetes Care ; 41(2): 368-371, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29158250

RESUMO

OBJECTIVE: Changes in liver fatty acid metabolism are important in understanding the mechanisms of diabetes remission and metabolic changes after bariatric surgery. RESEARCH DESIGN AND METHODS: Liver fatty acid uptake (LFU), blood flow, and fat content (LFC) were measured in 25 obese subjects before bariatric surgery and 6 months after using positron emission tomography/computed tomography and MRS; 14 lean individuals served as the control subjects. RESULTS: The increased LFU in obese subjects was associated with body adiposity. LFU was reduced postoperatively but was still high compared with the control subjects. LFC was normalized. Liver blood flow (per unit volume) was higher in obese subjects than in the control subjects at baseline and was further increased postoperatively; however, the total organ blood flow was unchanged as the liver volume decreased. CONCLUSIONS: The findings suggest that in a postoperative state, intrahepatic fatty acids are not stored in the liver but are used for oxidation to provide energy. Changes in perfusion may contribute to improved liver metabolism postoperatively.


Assuntos
Cirurgia Bariátrica , Ácidos Graxos/metabolismo , Fígado/metabolismo , Obesidade Mórbida/cirurgia , Adiposidade/fisiologia , Adulto , Estudos de Casos e Controles , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/cirurgia , Feminino , Seguimentos , Humanos , Metabolismo dos Lipídeos/fisiologia , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Período Pós-Operatório , Indução de Remissão , Redução de Peso/fisiologia
19.
Diabetes Obes Metab ; 20(4): 963-973, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29206339

RESUMO

AIMS: To study myocardial substrate uptake, structure and function, before and after bariatric surgery, to clarify the interaction between myocardial metabolism and cardiac remodelling in morbid obesity. METHODS: We studied 46 obese patients (age 44 ± 10 years, body mass index [BMI] 42 ± 4 kg/m2 ), including 18 with type 2 diabetes (T2D) before and 6 months after bariatric surgery and 25 healthy age-matched control group subjects. Myocardial fasting free fatty acid uptake (MFAU) and insulin-stimulated myocardial glucose uptake (MGU) were measured using positron-emission tomography. Myocardial structure and function, and myocardial triglyceride content (MTGC) and intrathoracic fat were measured using magnetic resonance imaging and magnetic resonance spectroscopy. RESULTS: The morbidly obese study participants, with or without T2D, had cardiac hypertrophy, impaired myocardial function and substrate metabolism compared with the control group. Surgery led to marked weight reduction and remission of T2D in most of the participants. Postoperatively, myocardial function and structure improved and myocardial substrate metabolism normalized. Intrathoracic fat, but not MTGC, was reduced. Before surgery, BMI and MFAU correlated with left ventricular hypertrophy, and BMI, age and intrathoracic fat mass were the main variables associated with cardiac function. The improvement in whole-body insulin sensitivity correlated positively with the increase in MGU and the decrease in MFAU. CONCLUSIONS: In the present study, obesity and age, rather than myocardial substrate uptake, were the causes of cardiac remodelling in morbidly obese patients with or without T2D. Cardiac remodelling and impaired myocardial substrate metabolism are reversible after surgically induced weight loss and amelioration of T2D.


Assuntos
Remodelamento Atrial/fisiologia , Cirurgia Bariátrica/reabilitação , Miocárdio/metabolismo , Obesidade Mórbida/cirurgia , Remodelação Ventricular/fisiologia , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA