Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(35): 7113-7122, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32804504

RESUMO

We have detected the H2O·DMA and H2O·TMA (DMA, dimethylamine; TMA, trimethylamine) bimolecular complexes at room temperature in the gas phase using Fourier transform infrared spectroscopy. For both complexes, five vibrational bands associated with the H2O molecule are observed and assigned. Within a reduced dimensional local mode framework, we set up a six-dimensional model, including the three H2O vibrational modes and three of the six intermolecular modes, all described with internal curvilinear coordinates. The single points on the potential energy surface and Eckart corrected dipole moment surface are calculated with the CCSD(T)-F12a/cc-pVDZ-F12 method. Combining the measured and calculated transition intensities, we determine the Gibbs energy of complex formation of both complexes from each of the observed bands. The multiple determinations give similar Gibbs energies, for each complex, and increase the confidence in the combined experimental and theoretical approach, and improve the accuracy of the determined Gibbs energies. The average Gibbs energies of complex formation are found to be 5.0 ± 0.2 and 3.8 ± 0.2 kJ/mol for H2O·DMA and H2O·TMA, respectively. In addition to the experimental uncertainty, there is a potential error on the calculated intensities corresponding to 0.4 kJ/mol. However, the small spread among the four determinations suggests that this error is even less. The Gibbs energies of these complexes serve as accurate benchmarks for theoretical approaches that are prevalent in hydrogen bonding and nucleation studies.

2.
J Phys Chem A ; 122(15): 3899-3908, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29579393

RESUMO

Gas-phase Fourier transform infrared spectroscopy and quantum chemical calculations are combined to illustrate the effect of hybridization on the hydrogen-bond acceptor strength of nitrogen by a comparison of nine bimolecular complexes. We present gas-phase results for the complexes of methanol, ethanol, and 2,2,2-trifluoroethanol with acetonitrile (sp-hybridized N) and find that the structure of these complexes is nearly linear and dominated by the OH···N hydrogen bond with no experimental indication of an OH-π bonded structure. We compare experimental redshifts and equilibrium constants, obtained by combining experiments and theory, for these complexes to the corresponding complexes with pyridine (sp2-hybridized N) and trimethylamine (sp3-hybridized N). The comparison clearly illustrates that increasing the s-character of the nitrogen lone pair decreases the hydrogen-bond acceptor strength (sp3 > sp2 > sp). The observed trend correlates with the basicity of the acceptors and can be explained by the partial charge on the accepting nitrogen atom and the degree of localization of the nitrogen lone pair.

3.
J Phys Chem A ; 121(18): 3452-3460, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28436672

RESUMO

This work considers the nature of the intermolecular hydrogen bond in a series of 15 different complexes with OH donor groups and N, O, P, or S acceptor atoms. To complement the existing literature, room-temperature gas-phase vibrational spectra of the methanol-pyridine, ethanol-pyridine, and 2,2,2-trifluoroethanol-pyridine complexes were recorded. These complexes were chosen, as they exhibit hydrogen bonds of intermediate strength as compared to previous investigations that involved strong or weak hydrogen bonds. Non Covalent Interactions (NCI) theory was used to calculate various properties of the intermolecular hydrogen bonds, which were compared to the experimental OH-stretching vibrational red shifts. We find that the experimental OH-stretching red shifts correlate strongly with the kinetic energy density integrated within the reduced density gradient volume that describes a hydrogen bond [G(s0.5)]. Given that vibrational red shifts are commonly used as a metric of the strength of a hydrogen bond, this suggests that G(s0.5) could be used as a predictor of hydrogen bonding strength.

4.
Phys Chem Chem Phys ; 18(34): 23831-9, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27523902

RESUMO

We have measured the infrared spectra of ethanol·dimethylamine and methanol·dimethylamine complexes in the 299-374 K temperature range, and have determined the enthalpy of complex formation (ΔH) to be -31.1 ± 2 and -29.5 ± 2 kJ mol(-1), respectively. The corresponding values of the Gibbs free energy (ΔG) are determined from the experimental integrated absorbance and a calculated oscillator strength of the OH-stretching vibrational transition to be 4.1 ± 0.3 and 3.9 ± 0.3 kJ mol(-1) at 302 and 300 K, respectively. The entropy, ΔS is determined from the values of ΔH and ΔG to be -117 ± 7 and -111 ± 10 J (mol K)(-1) for the ethanol·dimethylamine and methanol·dimethylamine complexes, respectively. The determined ΔH, ΔG and ΔS values of the two complexes are similar, as expected by the similarity to their donor molecules ethanol and methanol. Values of ΔH, ΔG and ΔS in chemical reactions are often obtained from quantum chemical calculations. However, these calculated values have limited accuracy and large variations are found using different methods. The accuracy of the present ΔH, ΔG and ΔS values is such that the benchmarking of theoretical methods is possible.

5.
J Phys Chem A ; 119(44): 10988-98, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26451467

RESUMO

We have observed the NH···P hydrogen bond in a gas phase complex. The bond is identified in the dimethylamine-trimethylphosphine complex by a red shift of the fundamental NH-stretching frequency observed using Fourier transform infrared spectroscopy (FT-IR). On the basis of the measured NH-stretching frequency red shifts, we find that P is a hydrogen bond acceptor atom similar in strength to S. Both are stronger acceptors than O and significantly weaker acceptors than N. The hydrogen bond angle, ∠NHP, is found to be very sensitive to the functional employed in density functional theory (DFT) optimizations of the complex and is a possible parameter to assess the quality of DFT functionals. Natural bonding orbital (NBO) energies and results from the topological methods atoms in molecules (AIM) and noncovalent interactions (NCI) indicate that the sensitivity is caused by the weakness of the hydrogen bond compared to secondary interactions. We find that B3LYP favors the hydrogen bond and M06-2X favors the secondary interactions leading to under- and overestimation, respectively, of the hydrogen bond angle relative to a DF-LCCSD(T)-F12a calculated angle. The remaining functionals tested, B3LYP-D3, B3LYP-D3BJ, CAM-B3LYP, and ωB97X-D, as well as MP2, show comparable contributions from the hydrogen bond and the secondary interactions and are close to DF-LCCSD(T)-F12a results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA