Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; : 1-13, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572598

RESUMO

Toxicology studies in early fish life stages serve an important function in measuring the impact of potentially harmful substances, such as crude oil, on marine life. Morphometric analysis of larvae can reveal the effects of such substances in retarding growth and development. These studies are labor intensive and time consuming, typically resulting in only a small number of samples being considered. An automated system for imaging and measurement of experimental animals, using flow-through imaging and an artificial neural network to allow faster sampling of more individuals, has been described previously and used in toxicity experiments. This study compares the performance of the automated imaging and analysis system with traditional microscopy techniques in measuring biologically relevant endpoints using two oil treatments as positive controls. We demonstrate that while the automated system typically underestimates morphometric measurements relative to analysis of manual microscopy images, it shows similar statistical results to the manual method when comparing treatments across most endpoints. It allows for many more individual specimens to be sampled in a shorter time period, reducing labor requirements and improving statistical power in such studies, and is noninvasive allowing for repeated sampling of the same population.

2.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Copépodes/efeitos dos fármacos , Golfo do México , Tempo (Meteorologia) , Dose Letal Mediana
3.
J Toxicol Environ Health A ; : 1-18, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870159

RESUMO

Accidental crude oil spills to the marine environment cause dispersion of oil into the water column through the actions of breaking waves, a process that can be facilitated using chemical dispersants. Oil dispersions contain dispersed micron-sized oil droplets and dissolved oil components, and the toxicity of oil dispersions has been assumed to be associated primarily with the latter. However, most hydrophobic, bioaccumulative and toxic crude oil components are retained within the droplets which may interact with marine filter-feeders. We here summarize the findings of 15 years of research using a unique methodology to generate controlled concentrations and droplet size distributions of dispersed crude oil to study effects on the filter-feeding cold-water copepod Calanus finmarchicus. We focus primarily on the contribution of chemical dispersants and micron-sized oil droplets to uptake and toxicity of oil compounds. Oil dispersion exposures cause PAH uptake and oil droplet accumulation on copepod body surfaces and inside their gastrointestinal tract, and exposures to high exposure (mg/L range) reduce feeding activity, causes reproductive impairments and mortality. These effects were slightly higher in the presence of chemical dispersants, possibly due to higher filtration of chemically dispersed droplets. For C. finmarchicus, dispersions containing oil droplets caused more severe toxic effects than filtered dispersions, thus, oil droplets contribute to the observed toxicity. The methodology for generating crude oil dispersion is a valuable tool to isolate impacts of crude oil microdroplets and can facilitate future research on oil dispersion toxicity and produce data to improve oil spill models.

4.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395093

RESUMO

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

5.
Mar Pollut Bull ; 190: 114843, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965263

RESUMO

Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 µg oil/L, equivalent to 0.1, 0.8 and 3.0 µg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 µg TPAH/L, respectively. Exposure to 0.1 µg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 µg TPAH/L for risk assessment models.


Assuntos
Gadiformes , Hidrocarbonetos Aromáticos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Animais , Petróleo/toxicidade , Petróleo/análise , Gadiformes/metabolismo , Larva/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 823: 153779, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150678

RESUMO

Chemical herders may be used to sequester and thicken surface oil slicks to increase the time window for performing in situ burning of spilled oil on the sea surface. For herder use to be an environmentally safe oil spill response option, information regarding their potential ecotoxicity both alone and in combination with oil is needed. This study aimed at assessing if using herders can cause toxicity to cold-water marine organisms. Our objective was to test the two chemical herders Siltech OP-40 (OP-40) and ThickSlick-6535 (TS-6535) with and without oil for toxicity using sensitive life stages of cold-water marine copepod (Calanus finmarchicus) and fish (Gadus morhua). For herders alone, OP-40 was consistently more toxic than TS-6535. To test herders in combination with oil, low-energy water accommodated fractions (LE-WAFs, without vortex) with Alaskan North Slope crude oils were prepared with and without herders. Dissolution of oil components from surface oil was somewhat delayed following herder application, due to herder-induced reduction in contact area between water and oil. The LE-WAFs were also used for toxicity testing, and we observed no significant differences in toxicity thresholds between treatments to LE-WAFs generated with oil alone and oil treated with herders. The operational herder-to-oil ratio is very low (1:500), and the herders tested in the present work displayed acute toxicity at concentrations well above what would be expected following in situ application. Application of chemical herders to oil slicks is not expected to add significant effects to that of the oil for cold-water marine species exposed to herder-treated oil slicks.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Poluição por Petróleo/análise , Água , Poluentes Químicos da Água/análise
7.
Ecotoxicol Environ Saf ; 229: 113100, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923326

RESUMO

During sub-sea oil spills to the marine environment, oil droplets will rise towards the sea surface at a rate determined by their density and diameter as well as the vertical turbulence in the water. Micro-droplets (< 50 µm) are expected to have prolonged residence times in the water column. If present, pelagic fish eggs may thus be exposed to dispersed oil from subsurface oil spills for days, and the contribution of these micro-droplets to toxicity is not well known. The purpose of this work was to investigate to what extent timing of exposure and the presence of oil micro droplets affects PAH uptake and survival of pelagic Atlantic cod eggs. A single batch of eggs was separated in two groups and exposed to dispersions and corresponding water-soluble fraction at 3-7 days (Early exposure) and 9-13 days (Late exposure) post fertilization. Partitioning of PAHs between crude oil microdroplets, water and eggs was estimated as well as the contribution of oil droplets to PAH body residue and acute and delayed mortality. Timing of oil exposure clearly affects both the mortality rate and the timing of mortality. Even though the body residue of PAHs were lower when embryos were exposed in the later embryonic stage, mortality rate increased relative to the early exposure indicating that critical body residue threshold is stage specific. Although our results suggest that the dissolved fraction is the dominating driver for toxicity in cod embryos exposed to oil dispersions, crude oil micro droplets contribute to increased mortality as well.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
8.
Aquat Toxicol ; 237: 105881, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139396

RESUMO

Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.


Assuntos
Óleos Combustíveis , Gadus morhua , Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Sci Rep ; 11(1): 8410, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863955

RESUMO

Climate change, along with environmental pollution, can act synergistically on an organism to amplify adverse effects of exposure. The Arctic is undergoing profound climatic change and an increase in human activity, resulting in a heightened risk of accidental oil spills. Embryos and larvae of polar cod (Boreogadus saida), a key Arctic forage fish species, were exposed to low levels of crude oil concurrently with a 2.3 °C increase in water temperature. Here we show synergistic adverse effects of increased temperature and crude oil exposure on early life stages documented by an increased prevalence of malformations and mortality in exposed larvae. The combined effects of these stressors were most prevalent in the first feeding larval stages despite embryonic exposure, highlighting potential long-term consequences of exposure for survival, growth, and reproduction. Our findings suggest that a warmer Arctic with greater human activity will adversely impact early life stages of this circumpolar forage fish.


Assuntos
Embrião não Mamífero/citologia , Larva/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Temperatura , Poluentes Químicos da Água/toxicidade , Animais , Regiões Árticas , Mudança Climática , Embrião não Mamífero/efeitos dos fármacos , Gadiformes , Larva/efeitos dos fármacos , Petróleo/análise , Poluição por Petróleo/análise , Testes de Toxicidade , Poluentes Químicos da Água/análise
10.
Rapid Commun Mass Spectrom ; 34(24): e8950, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945058

RESUMO

RATIONALE: Produced water (PW) discharge from the oil and gas industry represents the largest intentional marine waste volume. Alkyl phenols (APs) are one of the main toxic component groups found in PW, with concentration of APs in discharged PW from the Norwegian Sector of the North Sea up to >16 mg/L. Several species of fish spawn in direct proximity to offshore production platforms and may be at risk of AP exposure. Therefore, a sensitive method to determine the potential for bioaccumulation of APs in fish eggs is needed. METHODS: Fish eggs were extracted using liquid-solid extraction followed by gel permeation chromatography cleanup. Analysis was performed by gas chromatography coupled to triple quadrupole mass spectrometry. Extraction and analytical conditions were optimized for analysis of phenol and 30 APs (C1 -C9 ) with different degrees of branching in the alkyl chain. The method was verified and applied to analyze the body residue of APs in PW-exposed marine fish (Atlantic cod, Gadus morhua) eggs. RESULTS: A comprehensive and sensitive method for the determination of C0 -C9 APs was developed. Detection limits were in the range 0.03-8 ng. Apart from a few compounds with poor recovery, the method generally provided reliable results with good precision (<15%). CONCLUSIONS: We demonstrate the successful application of an optimized extraction method for APs in fish eggs and show first results of AP accumulation in cod embryos exposed to PW in the laboratory.


Assuntos
Peixes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óvulo/química , Fenóis/análise , Poluentes Químicos da Água/análise , Animais , Exposição Ambiental/análise , Testes de Toxicidade
11.
Mar Environ Res ; 157: 104928, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275510

RESUMO

Macondo source oils and artificially weathered oil residues from 150 °C+ to 300 °C+, including artificially photo oxidized oils, were prepared and used for generating low energy water accommodated fractions (LE-WAFs) in order to assess the impact of oil weathering on WAF chemistry composition and toxicity to marine organisms. Two pelagic species representing primary producers (the marine algae Skeletonema pseudocostatum) and invertebrates (the marine copepod Acartia tonsa) were tested. Obtained acute toxicity levels, expressed as EC/LC50 values, were in the same range or above the obtained maximum WAF concentrations for WAFs from most weathering degrees. Based on % WAF dilutions, reduced toxicity was determined as a function of weathering. The chemical compositions of all WAFs were compared to compositions obtained from water samples reported in the GRIIDC database using multivariate analysis, indicating that WAFs of photo oxidized and two field weathered oils resembled the field data the most.


Assuntos
Poluição por Petróleo , Petróleo/toxicidade , Animais , Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Oxirredução , Hidrocarbonetos Policíclicos Aromáticos , Testes de Toxicidade Aguda , Poluentes Químicos da Água
12.
Biol Bull ; 237(2): 90-110, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31714858

RESUMO

Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the ß-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.


Assuntos
Copépodes , Diapausa , Petróleo , Animais , Regiões Árticas , Ecossistema , Metabolismo dos Lipídeos
13.
Mar Environ Res ; 150: 104753, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284099

RESUMO

During accidental crude oil spills and permitted discharges of produced water into the marine environment, a large fraction of naturally occurring oil components will be contained in micron-sized oil droplets. Toxicity is assumed to be associated with the dissolved fraction of oil components, however the potential contribution of oil droplets to toxicity is currently not well known. In the present work we wanted to evaluate the contribution of oil droplets to effects on normal development of Atlantic cod (Gadus morhua) through exposing embryos for 96 h to un-filtered (dispersions containing droplets) and filtered (water soluble fractions) dispersions in a flow-through system at dispersion concentrations ranging from 0.14 to 4.34 mg oil/L. After exposure, the embryos were kept in clean seawater until hatch when survival, development and morphology were assessed. The experiment was performed at two different stages of embryonic development to cover two potentially sensitive stages (gastrulation and organogenesis). Exposure of cod embryos to crude oil dispersions caused acute and delayed toxicity, including manifestation of morphological deformations in hatched larvae. Oil droplets appear to contribute to some of the observed effects including mortality, larvae condition (standard length, body surface, and yolk sac size), spinal deformations as well as alterations in craniofacial and jaw development. The timing of exposure may be essential for the development of effects as higher acute mortality was observed when embryos were exposed from the start of gastrulation (Experiment 1) than when exposed during organogenesis (Experiment 2). Even though low mortality was observed when exposed during organogenesis, concentration-dependent mortality was observed during recovery.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Embrião não Mamífero/efeitos dos fármacos , Peixes , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade
14.
Mar Pollut Bull ; 138: 286-294, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30660275

RESUMO

Toxicity of weathered oil was investigated using Atlantic cod (Gadus morhua) larvae. A novel exposure system was applied to differentiate effects associated with dissolved and droplet oil with and without dispersant. After a 4-day exposure and subsequent 4-day recovery period, survival and growth were determined. Analytical data characterizing test oil composition included polyaromatic hydrocarbons (PAH) based on GC/MS and unresolved hydrocarbon classes obtained by two-dimensional chromatography coupled with flame ionization detection was used as input to an oil solubility model to calculate toxic units (TUs) of dissolved PAHs and whole oil, respectively. Critical target lipid body burdens derived from modeling characterizing the sensitivity of effect endpoints investigated were consistent across treatments and within the range previously reported for pelagic species. Individually measured PAHs captured only 3-11% of the TUs associated with the whole oil highlighting the limitations of traditional total PAH exposure metrics for expressing oil toxicity data.


Assuntos
Gadus morhua/fisiologia , Hidrocarbonetos/toxicidade , Poluição por Petróleo , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Gadus morhua/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Larva , Modelos Teóricos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
15.
Environ Sci Technol ; 52(24): 14436-14444, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30481011

RESUMO

The impact of oil microdroplets on the partitioning of polycyclic aromatic hydrocarbons (PAHs) between water and marine zooplankton was evaluated. The experimental approach allowed direct comparison of crude oil dispersions (containing both micro-oil droplets and water-soluble fraction; WSF) with the corresponding WSF (without oil droplets). Dispersion concentration and oil type have an impact on the PAH composition of WSFs and therefore affect dispersion bioavailability. Higher T-PAH body residues were observed in copepods treated with dispersions compared to the corresponding WSFs. PAHs with log Kow 3-4.5 displayed comparable accumulation factors between treatments; however, accumulation factors for less soluble PAHs (log Kow = 4.5-6) were higher for the WSF than for the dispersions, suggesting low bioavailability for components contained in oil droplets. The higher PAH body residue in dispersion exposures is assumed to result mainly from copepods grazing on oil droplets, which offers an alternative uptake route to passive diffusion. To a large degree this route is controlled by the filtration rates of the copepods, which may be inversely related to droplet concentration.


Assuntos
Copépodes , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomassa , Água do Mar , Água
16.
Environ Sci Technol ; 52(17): 9899-9907, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29897747

RESUMO

The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.


Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Regiões Árticas , Toxicocinética
17.
Sci Total Environ ; 640-641: 138-143, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859431

RESUMO

Crude oil accidentally spilled into the marine environment undergoes natural weathering processes that result in oil components being dissolved into the water column or present in particulate form as dispersed oil droplets. Oil components dissolved in seawater are typically considered as more bioavailable to pelagic marine organisms and the main driver of crude oil toxicity, however, recent studies indicate that oil droplets may also contribute. The adhesion of crude oil droplets onto the eggs of pelagic fish species may cause enhanced transfer of oil components via the egg surface causing toxicity during the sensitive embryonic developmental stage. In the current study, we utilized an oil droplet dispersion generator to generate defined oil droplets sizes/concentrations and exposed Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to investigate if the potential for dispersed oil droplets to adhere onto the surface of eggs was species-dependent. The influence of a commercial chemical dispersant on the adhesion process was also studied. A key finding was that the adhesion of oil droplets was significantly higher for haddock than cod, highlighting key differences and exposure risks between the two species. Scanning electron microscopy indicates that the differences in oil droplet adhesion may be driven by the surface morphology of the eggs. Another important finding was that the adhesion capacity of oil droplets to fish eggs is significantly reduced (cod 37.3%, haddock 41.7%) in the presence of the chemical dispersant.


Assuntos
Gadiformes/fisiologia , Óvulo/química , Petróleo/análise , Poluentes Químicos da Água/análise , Animais , Gadus morhua/fisiologia , Poluição por Petróleo
18.
Chemosphere ; 204: 87-91, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653326

RESUMO

Hydrocarbon biodegradation may be slower in cold Arctic than in temperate seawater, and this will affect the toxicity time window of the hydrocarbons. In this study, the acute toxicities of water-soluble phases of 1,3-dimethylnaphthalene, phenanthrene, fluoranthene, and low energy water-accommodated fractions (LE-WAFs) of an evaporated (200 °C+) crude oil, were screened by a Microtox bioassay during biodegradation in cold seawater (4-5 °C). The water-solubility of fluoranthene was too low to provoke a toxic response at any time, whereas the toxicity of 1,3-dimethylnaphthalene and phenanthrene decreased over time in relation to biotransformation of these compounds. In LE-WAFs, the Microtox EC50 was associated with biodegradation of the predominant hydrocarbons (naphthalenes, 2- to 3-ring PAH), as well as with phenol degradation products. The acute toxicities of single hydrocarbons and LE-WAFs persisted for a longer period in the cold seawater than previously shown at higher seawater temperatures. These results suggest implications for fate and effects assessment of hydrocarbons after oil spills in cold environments, like the Arctic. However, further biodegradation studies using Arctic seawater and relevant species for toxicity testing are needed for confirmation.


Assuntos
Biodegradação Ambiental , Temperatura Baixa , Petróleo/metabolismo , Água do Mar/química , Regiões Árticas , Hidrocarbonetos/metabolismo , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Testes de Toxicidade , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
19.
Environ Sci Technol ; 52(7): 4358-4366, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514001

RESUMO

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied. The purpose of the present work was to evaluate the toxicity of degraded (0-21 days) water-soluble oil components. Low-energy water accommodated fraction (LE-WAF) of a weathered crude oil was prepared with nutrient amended seawater at 5 °C, kept in the dark, and sampled at 0, 10, 14, and 21 days. Samples were extracted with dichloromethane and toxicity experiments were conducted with reconstituted extracts. Toxicity experiments were conducted for 4 days on developing cod ( Gadus morhua) embryos during a critical period of their heart development. After exposure, embryos were kept in clean seawater and observed until 5 days post hatch. Survival, hatching, morphometric aberrations, and cardiac function was studied. The expected decrease in sublethal toxicity during the biodegradation period was not found, indicating that metabolites formed during biodegradation likely contributed to larvae toxicity.


Assuntos
Petróleo , Poluentes Químicos da Água , Animais , Biodegradação Ambiental , Peixes , Água
20.
J Toxicol Environ Health A ; 80(16-18): 820-829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777041

RESUMO

Use of hydrogen peroxide (H2O2) for removal of salmon lice in the aquaculture industry has created concern that non-target organisms might be affected during treatment scenarios. The aim of the present study was to examine the potential for H2O2 to produce oxidative stress and reduce survival in one of the most abundant zooplankton species in Norwegian coastal areas, the copepod Calanus finmarchicus. Copepods were subjected to two 96-hr tests: (1) acute toxicity test where mortality was determined and (2) treated copepods were exposed to concentrations below the No Observed Effect Concentration (0.75 mg/L) H2O2 and analyzed for antioxidant enzyme activities, as well as levels of glutathione (GSH) and malondialdehyde (MDA). Compared to available and comparable LC50 values from the literature, our results suggest that C. finmarchicus is highly sensitive to H2O2. However, 96-hr exposure of C. finmarchicus to 0.75 mg H2O2/L did not significantly affect the antioxidant systems even though the concentration is just below the level where mortality is expected. Data suggest that aqueous H2O2 exposure did not cause cellular accumulation with associated oxidative stress, but rather produced acute effects on copepod surface (carapace). Further investigation is required to ensure that aqueous exposure during H2O2 treatment in salmon fish farms does not exert adverse effects on local non-target crustacean species and populations. In particular, studies on copepod developmental stages with a more permeable carapace are warranted.


Assuntos
Copépodes/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Resistência a Medicamentos , Contaminação de Alimentos/prevenção & controle , Glutationa/metabolismo , Dose Letal Mediana , Malondialdeído/metabolismo , Nível de Efeito Adverso não Observado , Noruega , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/química , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA