Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 385(3): 214-221, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997325

RESUMO

Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. Despite an established standard of care for advanced forms of DR, some patients continue to lose vision after treatment. This may be due to the development of diabetic macular ischemia (DMI), which has no approved treatment. Neuropilin-1 (Nrp-1) is a coreceptor with two ligand-binding domains, with semaphorin-3A (Sema3A) binding to the A-domain and vascular endothelial growth factor-A (VEGF-A) binding to the B-domain. Sema3A directs a subset of neuronal growth cones as well as blood vessel growth by repulsion; when bound to Nrp-1, VEGF-A mediates vascular permeability and angiogenesis. Modulating Nrp-1 could therefore address multiple complications arising from DR, such as diabetic macular edema (DME) and DMI. BI-Y is a monoclonal antibody that binds to the Nrp-1 A-domain, antagonizing the effects of the ligand Sema3A and inhibiting VEGF-A-induced vascular permeability. This series of in vitro and in vivo studies examined the binding kinetics of BI-Y to Nrp-1 with and without VEGF-A165, the effect of BI-Y on Sema3A-induced cytoskeletal collapse, the effect of BI-Y on VEGF- A165-induced angiogenesis, neovascularization, cell integrity loss and permeability, and retinal revascularization. The data show that BI-Y binds to Nrp-1 and inhibits Sema3A-induced cytoskeletal collapse in vitro, may enhance revascularization of ischemic areas in an oxygen-induced retinopathy mouse model, and prevents VEGF-A-induced retinal hyperpermeability in rats. However, BI-Y does not interfere with VEGF-A-dependent choroidal neovascularization. These results support further investigation of BI-Y as a potential treatment for DMI and DME. SIGNIFICANCE STATEMENT: Diabetic macular ischemia (DMI) is a complication of diabetic retinopathy (DR) with no approved pharmacological treatment. Diabetic macular edema (DME) commonly co-occurs with DMI in patients with DR. This series of preclinical studies in mouse and rat models shows that neuropilin-1 antagonist BI-Y may enhance the revascularization of ischemic areas and prevents vascular endothelial growth factor-A (VEGF-A)-induced retinal hyperpermeability without affecting VEGF-A-dependent choroidal neovascularization; thus, BI-Y may be of interest as a potential treatment for patients with DR.


Assuntos
Neovascularização de Coroide , Retinopatia Diabética , Edema Macular , Doenças Retinianas , Animais , Camundongos , Ratos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Ligantes , Edema Macular/tratamento farmacológico , Edema Macular/metabolismo , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/metabolismo , Roedores/metabolismo , Semaforina-3A , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Front Immunol ; 13: 862757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967294

RESUMO

VISTA (PD-1H) is an immune regulatory molecule considered part of the next wave of immuno-oncology targets. VISTA is an immunoglobulin (Ig) superfamily cell surface molecule mainly expressed on myeloid cells, and to some extent on NK cells and T cells. In previous preclinical studies, some VISTA-targeting antibodies provided immune inhibitory signals, while other antibodies triggered immune stimulatory signals. Importantly, for therapeutic antibodies, the isotype backbone can have a strong impact on antibody function. To elucidate the mode of action of immune stimulatory anti-VISTA antibodies, we studied three different anti-human VISTA antibody clones, each on three different IgG isotypes currently used for therapeutic antibodies: unaltered IgG1 (IgG1-WT), IgG1-KO (IgG1-LL234,235AA-variant with reduced Fc-effector function), and IgG4-Pro (IgG4- S228P-variant with stabilized hinge region). Antibody functionality was analysed in mixed leukocyte reaction (MLR) of human peripheral blood mononuclear cells (PBMCs), as a model system for ongoing immune reactions, on unstimulated human PBMCs, as a model system for a resting immune system, and also on acute myeloid leukemia (AML) patient samples to evaluate anti-VISTA antibody effects on primary tumor material. The functions of three anti-human VISTA antibodies were determined by their IgG isotype backbones. An MLR of healthy donor PBMCs was effectively augmented by anti-VISTA-IgG4-Pro and anti-VISTA-IgG1-WT antibodies, as indicated by increased levels of cytokines, T cell activation markers and T cell proliferation. However, in a culture of unstimulated PBMCs of single healthy donors, only anti-VISTA-IgG1-WT antibodies increased the activation marker HLA-DR on resting myeloid cells, and chemokine levels. Interestingly, interactions with different Fc-receptors were required for these effects, namely CD64 for augmentation of MLR, and CD16 for activation of resting myeloid cells. Furthermore, anti-VISTA-IgG1-KO antibodies had nearly no impact in any model system. Similarly, in AML patient samples, anti-VISTA-antibody on IgG4-Pro backbone, but not on IgG1-KO backbone, increased interactions, as a novel readout of activity, between immune cells and CD34+ AML cancer cells. In conclusion, the immune stimulatory effects of antagonistic anti-VISTA antibodies are defined by the antibody isotype and interaction with different Fc-gamma-receptors, highlighting the importance of understanding these interactions when designing immune stimulatory antibody therapeutics for immuno-oncology applications.


Assuntos
Antígenos B7/imunologia , Neoplasias , Receptores Fc , Humanos , Imunoglobulina G , Leucócitos Mononucleares , Receptores de IgG
3.
Int J Pharm ; 609: 121162, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34624444

RESUMO

Antibodies targeting the CD40-CD40L pathway have great potential for treating autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus (SLE), lupus nephritis (LN), and inflammatory bowel diseases (IBD). However, in addition to the known difficulty in generating a purely antagonistic CD40 antibody, the presence of CD40 and CD40L on platelets creates additional unique challenges for the safety, target coverage, and clearance of antibodies targeting this pathway. Previously described therapeutic antibodies targeting this pathway have various shortcomings, and the full therapeutic potential of this axis has yet to be realized. Herein, we describe the generation and characterization of BI 655064, a novel, purely antagonistic anti-CD40 antibody that potently neutralizes CD40-CD40L-dependent B-cell stimulation without evidence of impacting platelet functions. This uniquely optimized antibody targeting a highly challenging pathway was obtained by applying stringent functional and biophysical criteria during the lead selection process. BI 655064 has favorable target-mediated drug disposition (TMDD)-saturation pharmacokinetics, consistent with that of a high-quality therapeutic monoclonal antibody.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Doenças Autoimunes/tratamento farmacológico , Linfócitos B , Antígenos CD40 , Ligante de CD40 , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA