Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 170658, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340825

RESUMO

Plants produce a diverse array of toxic compounds which may be released by precipitation, explaining their wide occurrence in surrounding soil and water. This study presents the first mechanistic model for describing the generation and environmental fate of a natural toxin, i.e. ptaquiloside (PTA), a carcinogenic phytotoxin produced by bracken fern (Pteridium aquilinum L. Kuhn). The newly adapted DAISY model was calibrated based on two-year monitoring performed in the period 2018-2019 in a Danish bracken population located in a forest glade. Several functions related to the fate of PTA were calibrated, covering processes from toxin generation in the canopy, wash off by precipitation and degradation in the soil. Model results show a good description of observed bracken biomass and PTA contents, supporting the assumption that toxin production can be explained by the production of new biomass. Model results show that only 4.4 % of the PTA produced in bracken is washed off by precipitation, from both canopy and litter. Model simulations showed that PTA degrades rapidly once in the soil, especially during summer due to the high soil temperatures. Leaching takes place in form of pulses directly connected to precipitation events, with maximum simulated concentrations up to 4.39 µg L-1 at 50 cm depth. Macropore transport is mainly responsible for the events with the highest PTA concentrations, contributing to 72 % of the total mass of PTA leached. Based on the results, we identify areas with high density of bracken, high precipitation during the summer and soils characterized by fast transport, as the most vulnerable to surface and groundwater pollution by phytotoxins.


Assuntos
Pteridium , Sesquiterpenos , Pteridium/metabolismo , Rizosfera , Sesquiterpenos/metabolismo , Indanos , Solo
2.
Water Res ; 244: 120535, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660466

RESUMO

Vinyl chloride (VC) is a dominant carcinogenic residual in many aged chlorinated solvent plumes, and it remains a huge challenge to clean it up. Zerovalent iron (ZVI) is an effective reductant for many chlorinated compounds but shows low VC removal efficiency at field scale. Amendment of ZVI with a carbonaceous material may be used to both preconcentrate VC and facilitate redox reactions. In this study, nitrogen-doped graphene (NG) produced by a simple co-pyrolysis method using urea as nitrogen (N) source, was tested as a catalyst for VC reduction by nanoscale ZVI (nZVI). The extent of VC reduction to ethylene in the presence of 2 g/L of nZVI was less than 1% after 3 days, and barely improved with the addition of 4 g/L of graphene. In contrast, with amendment of nZVI with NG produced at pyrolysis temperature (PT) of 950 °C, the VC reduction extent increased more than 10-fold to 69%. The reactivity increased with NG PT increasing from 400 °C to an optimum at 950 °C, and it increased linearly with NG loadings. Interestingly, N dosage had little effect on reactivity if NG was produced at PT of 950 °C, while a positive correlation was observed for NG produced at PT of 600 °C. XPS and Raman analyses revealed that for NG produced at lower PT (<800 °C) mainly the content of pyridine-N-oxide (PNO) groups correlates with reactivity, while for NG produced at higher PT up to 950 °C, reactivity correlates mainly with N induced structural defects in graphene. The results of quenching and hydrogen yield experiments indicated that NG promote reduction of VC by storage of atomic hydrogen, thus increasing its availability for VC reduction, while likely also enabling electron transfer from nZVI to VC. Overall, these findings demonstrate effective chemical reduction of VC by a nZVI-NG composite, and they give insights into the effects of N doping on redox reactivity and hydrogen storage potential of carbonaceous materials.


Assuntos
Grafite , Cloreto de Vinil , Catálise , Hidrogênio , Ferro , Nitrogênio
3.
Sci Rep ; 10(1): 19784, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188248

RESUMO

Pyrrolizidine alkaloids (PAs) are persistent mutagenic and carcinogenic compounds produced by many common plant species. Health authorities recommend minimising human exposure via food and medicinal products to ensure consumer health and safety. However, there is little awareness that PAs can contaminate water resources. Therefore, no regulations exist to limit PAs in drinking water. This study measured a PA base concentration of ~ 70 ng/L in stream water adjacent to an invasive PA-producing plant Petasites hybridus (Asteraceae). After intense rain the PA concentration increased tenfold. In addition, PAs measured up to 230 ng/L in seepage water from groundwater wells. The dominant PAs in both water types corresponded to the most abundant PAs in the plants (senkirkine, senecionine, senecionine N-oxide). The study presents the first discovery of persistent plant toxins in well water and their associated risks. In addition, it for the first time reports monocrotaline and monocrotaline N-oxide in Petasites sp.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31931331

RESUMO

Ptaquiloside (PTA) is an illudane glycoside partly responsible for the carcinogenicity of bracken ferns (Pteridium sp.). The PTA analogues ptesculentoside (PTE) and caudatoside (CAU) have similar biochemical reactivity. However, both compounds are highly under-investigated due to the lack of analytical standards and appropriate methods. This study presents a robust method for preparation of analytical standards of PTE, CAU, PTA, the corresponding hydrolysis products: pterosins G, A and B, and an LC-MS based method for simultaneous quantification of the six compounds in bracken. The chromatographic separation of analytes takes 5 min. The observed linear range of quantification was 20-500 µg/L for PTA and pterosin B, and 10-250 µg/L for the remaining compounds (r > 0.999). The limits of detection were 0.08-0.26 µg/L for PTE, CAU and PTA and 0.01-0.03 µg/L for the pterosins, equivalent to 2.0-6.5 µg/g and 0.25-0.75 µg/g in dry weight, respectively. The method was applied on 18 samples of dried fern leaves from 6 continents. Results demonstrated high variation in concentrations of PTE, CAU and PTA with levels prior to hydrolysis up to 3,900, 2,200 and 2,100 µg/g respectively. This is the first analytical method for simultaneous and direct measurement of all six compounds. Its application demonstrated that bracken ferns contain significant amounts of PTE and CAU relative to PTA.


Assuntos
Cromatografia Líquida/métodos , Glicosídeos , Indanos , Pteridium/química , Sesquiterpenos , Glicosídeos/análise , Glicosídeos/química , Indanos/análise , Indanos/química , Limite de Detecção , Modelos Lineares , Espectrometria de Massas/métodos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos/análise , Sesquiterpenos Policíclicos/química , Reprodutibilidade dos Testes , Sesquiterpenos/análise , Sesquiterpenos/química
5.
PLoS One ; 14(6): e0218628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31226154

RESUMO

Ptaquiloside is a natural toxin present in bracken ferns (Pteridium sp.). Cattle ingesting bracken may develop bladder tumours and excrete genotoxins in meat and milk. However, the fate of ptaquiloside in cattle and the link between ptaquiloside and cattle carcinogenesis is unresolved. Here, we present the toxicokinetic profile of ptaquiloside in plasma and urine after intravenous administration of ptaquiloside and after oral administration of bracken. Administered intravenously ptaquiloside, revealed a volume of distribution of 1.3 L kg-1 with a mean residence-time of 4 hours. A large fraction of ptaquiloside was converted to non-toxic pterosin B in the blood stream. Both ptaquiloside and pterosin B were excreted in urine (up to 41% of the dose). Oral administration of ptaquiloside via bracken extract or dried ferns did not result in observations of ptaquiloside in body fluids, indicating deglycosolidation in the rumen. Pterosin B was detected in both plasma and urine after oral administration. Hence, transport of carcinogenic ptaquiloside metabolites over the rumen membrane is indicated. Pterosin B recovered from urine counted for 7% of the dose given intravenously. Heifers exposed to bracken for 7 days (2 mg ptaquiloside kg-1) developed preneoplastic lesions in the urinary bladder most likely caused by genotoxic ptaquiloside metabolites.


Assuntos
Carcinógenos/farmacocinética , Bovinos/metabolismo , Indanos/farmacocinética , Sesquiterpenos/farmacocinética , Animais , Inativação Metabólica , Indanos/sangue , Indanos/urina , Pteridium/química , Rúmen/metabolismo , Sesquiterpenos/sangue , Sesquiterpenos/urina
6.
Anal Bioanal Chem ; 408(28): 7981-7990, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590319

RESUMO

The naturally occurring carcinogen ptaquiloside and its degradation product pterosin B are found in water leaching from bracken stands. The objective of this work is to present a new sample preservation method and a fast UPLC-MS/MS method for quantification of ptaquiloside and pterosin B in environmental water samples, employing a novel internal standard. A faster, reliable, and efficient method was developed for isolation of high purity ptaquiloside and pterosin B from plant material for use as analytical standards, with purity verified by 1H-NMR. The chemical analysis was performed by cleanup and preconcentration of samples with solid phase extraction, before analyte quantification with UPLC-MS/MS. By including gradient elution and optimizing the liquid chromatography mobile phase buffer system, a total run cycle of 5 min was achieved, with method detection limits, including preconcentration, of 8 and 4 ng/L for ptaquiloside and pterosin B, respectively. The use of loganin as internal standard improved repeatability of the determination of both analytes, though it could not be employed for sample preparation. Buffering raw water samples in situ with ammonium acetate to pH ∼5.5 decisively increased sample integrity at realistic transportation and storing conditions prior to extraction. Groundwater samples collected in November 2015 at the shallow water table below a Danish bracken stand were preserved and analyzed using the above methods, and PTA concentrations of 3.8 ± 0.24 µg/L (±sd, n = 3) were found, much higher than previously reported. Graphical abstract Workflow overview of ptaquiloside determination.

7.
Chemosphere ; 165: 453-459, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677121

RESUMO

Bracken ferns (Pteridium spp.) are well-known for their carcinogenic properties, which are ascribed to the content of ptaquiloside and ptaquiloside-like substances. Ptaquiloside leach from the ferns and may cause contamination of drinking water. Pterosin B is formed by hydrolysis of ptaquiloside. In soil, Pterosin B is adsorbed more strongly and it is expected to have a slower turnover than ptaquiloside. We thus hypothesized that pterosin B may serve as an indicator for any past presence of ptaquiloside. Pterosin B degradation was studied in acid forest soils from bracken-covered and bracken-free areas. Soil samples were incubated with pterosin B at 3 and 8 µg g-1 for 10 days, whereas sterile (autoclaved) samples were incubated for 23 days. Pterosin B showed unexpected fast degradation in soils with full degradation in topsoils in 2-5 days. Pterosin B dissipation followed the sum of two-first order reactions. The initial fast reaction with half-lives of 0.7-3.5 h contributed 11-59% of the total pterosin B degradation, while the slow reaction was 20-100 times slower than the fast reaction. Total dissipation half-lives were shorter for loamy sand (4 h) than for sandy loam soils (28 h). No degradation of pterosin B took place under sterile conditions assuming observed dissipation during the first 3 h could be attributed to irreversible sorption. Our results demonstrate that pterosin B is microbially degraded and that pterosin B is as unstable as ptaquiloside and hence cannot be used as an indicator for former presence of ptaquiloside in soil.


Assuntos
Carcinógenos/química , Indanos/química , Pteridium/química , Sesquiterpenos/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Hidrólise
8.
J Environ Manage ; 151: 258-66, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577704

RESUMO

Bracken ferns are some of the most widespread ferns in the World causing immense problems for land managers, foresters and rangers. Bracken is suspected of causing cancer in Humans due to its content of the carcinogen ptaquiloside. Ingestion of bracken, or food and drinking water contaminated with ptaquiloside may be the cause. The aim of this study was to monitor the content of ptaquiloside in 20 bracken stands from Britain to obtain a better understanding of the ptaquiloside dynamics and to evaluate the environmental implications of using different cutting regimes in bracken management. The ptaquiloside content in fronds ranged between 50 and 5790 µg/g corresponding to a ptaquiloside load in the standing biomass of up to 590 mg/m(2) in mature fronds. Ptaquiloside was also found in the underground rhizome system (11-657 µg/g) and in decaying litter (0.1-5.8 µg/g). The amount of ptaquiloside present in bracken stands at any given time is difficult to predict and did not show any correlations with edaphic growth factors. The content of ptaquiloside turned out to be higher in fronds emerging after cutting compared to uncut fronds. Environmental risk assessment and bracken management must therefore be based on actual and site specific determinations of the ptaquiloside content. Care must be taken to avoid leaching from cut ferns to aquifers and other recipients and appropriate precautionary measures must be taken to protect staff from exposure to bracken dust.


Assuntos
Carcinógenos/análise , Indanos/análise , Pteridium/química , Sesquiterpenos/análise , Solo/química , Conservação dos Recursos Naturais , Monitoramento Ambiental , Humanos , Indanos/química , Folhas de Planta/química , Rizoma/química , Medição de Risco , Escócia , Estações do Ano , Sesquiterpenos/química
9.
Environ Toxicol Chem ; 30(5): 1190-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21337607

RESUMO

Bioactive compounds produced by plants are easily transferred to soil and water and may cause adverse ecosystem effects. Cyclotides are gene-encoded, circular, cystine-rich mini-proteins produced in Violaceae and Rubiaceae in high amounts. Based on their biological activity and stability, cyclotides have promising pharmaceutical and agricultural applications. We report the toxicity of the cyclotides: kalata B1, kalata B2, and cycloviolacin O2 extracted from plants to green algae (Pseudokirchneriella subcapitata), duckweed (Lemna minor L.), lettuce (Lactuca sativa L.), and bacteria extracted from soil measured as [³H]leucine incorporation. Quantification by liquid chromatography-mass spectrometry demonstrated up to 98% loss of cyclotides from aqueous solutions because of sorption to test vials. Sorption was prevented by adding bovine serum albumin (BSA) to the aqueous media. Cyclotides were toxic to all test organisms with EC50 values of 12 through 140 µM (algae), 9 through 40 µM (duckweed), 4 through 54 µM (lettuce), and 7 through 26 µM (bacteria). Cycloviolacin O2 was the most potent cyclotide in all assays examined. This report is the first to document toxic effects of cyclotides in plants and soil bacteria and to demonstrate that cyclotides are as toxic as commonly used herbicides and biocides. Hence, cyclotides may adversely affect soil and aquatic environments, which needs to be taken into account in future risk assessment of cropping systems for production of these highly bioactive compounds.


Assuntos
Bactérias/efeitos dos fármacos , Ciclotídeos/toxicidade , Extratos Vegetais/toxicidade , Microbiologia do Solo , Poluentes Químicos da Água/toxicidade , Araceae/efeitos dos fármacos , Produtos Biológicos/toxicidade , Clorófitas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Lactuca/efeitos dos fármacos
10.
J Environ Qual ; 38(1): 93-102, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19141798

RESUMO

The mass balance of cadmium in forest ecosystems was parameterized. Soil pH is the main variable controlling retention of Cd in the soil and, hence, determines whether Cd is leached from the system or not. However the extent to which root uptake and biomass accumulation of Cd, or the return of Cd to the soil as internal cycling, influences forest Cd balances is unknown. Also unknown is whether these fluxes might counteract Cd leaching from forest soils. The objective of this study was to compare the Cd mass balance of two contrasting oak forest ecosystems, one grown on an acid sandy soil and one on a near-neutral loamy soil. The oak forest ecosystem grown on the acid sandy soil was a source of Cd with an input flux from deposition of 64 microg Cd m(-2) yr(-1), which was only 30% of the output flux with seepage water (175 microg Cd m(-2) yr(-1)). The oak forest ecosystem on the loamy soil acted as a sink for Cd, with an input flux (92 microg Cd m(-2) yr(-1)) 8.4 times higher than the output flux (11 microg Cd m(-2) yr(-1)). Biomass accumulation was 46% and 74% of root uptake on the sandy and the loamy soil, respectively, indicating that biomass accumulation, if harvested, will reduce the net return to the soil and hence the potential amount of Cd prone for leaching.


Assuntos
Cádmio/análise , Ecossistema , Quercus/metabolismo , Solo/análise , Cádmio/metabolismo , Dinamarca , Concentração de Íons de Hidrogênio , Árvores/metabolismo
11.
Environ Toxicol Chem ; 27(2): 252-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18348642

RESUMO

Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.


Assuntos
Indanos/química , Indanos/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Poluentes do Solo/química , Solo/análise , Água/química , Biodegradação Ambiental , Cinética , Estrutura Molecular , Pteridium/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
12.
Environ Toxicol Chem ; 24(11): 2751-6, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16398109

RESUMO

Ptaquiloside (PTA) is a natural toxin produced by bracken (Pteridium aquilinum [L.] Kuhn). Assessment of PTA toxicity is needed because PTA deposited from bracken to soil may leach to surface and groundwater. Inhibition of soil respiration and genotoxic activity of PTA was determined by a soil microbial carbon transformation test and an umu test, respectively. In the carbon transformation test, sandy loam soil was incubated at five different initial concentrations of PTA for a period of 28 d, after which glucose was added and respiration measured for 12 consecutive hours. The tests were performed at 20 degrees C and soil moisture content of approximately 15%. For soil material sampled in the autumn, initial PTA concentrations ranging from 0.008 to 40.6 microg PTA/g dry soil were tested. From fitting of data by a sigmoidal function, a 10% effect dose (ED10) was estimated to 13 microg PTA/ g dry soil, with an upper 95% confidence limit of 43 microg PTA/g dry soil and a 95% lower confidence limit of -infinity microg PTA/g dry soil. For soil material sampled in late winter, initial PTA concentrations ranging from 1.56 to 212 microg PTA/g dry soil were tested, resulting in an ED10 value of 55 microg PTA/g dry soil, with an upper 95% confidence limit of 70 microg PTA/g dry soil and a 95% lower confidence limit of 40 microg PTA/g dry soil. The genotoxic activity of PTA was determined using the umu test without and with metabolic activation (addition of S9 rat liver homogenate). In tests with addition of S9, the induction ratio exceeded the critical ratio of 1.5 at a PTA concentration of 46 +/- 16 microg/ml and, in tests without S9, the critical ratio was exceeded at a PTA concentration of 279 +/- 22 microg/ml. The genotoxicity of PTA is comparable to that of quercetin, another bracken constituent. The toxicity of PTA toward microorganisms prolongs the persistence of PTA in terrestrial environments, increasing the risk of PTA leaching to drainage and groundwater.


Assuntos
Carcinógenos/toxicidade , Genoma Bacteriano/efeitos dos fármacos , Genoma Bacteriano/genética , Indanos/toxicidade , Pteridium/química , Sesquiterpenos/toxicidade , Microbiologia do Solo , Carbono/metabolismo , Carcinógenos/química , Indanos/química , Estrutura Molecular , Testes de Mutagenicidade , Sesquiterpenos/química , Temperatura , Fatores de Tempo
13.
Chemosphere ; 58(6): 823-35, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15621196

RESUMO

Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 500 mg m(-2). The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwater's impairing the quality of drinking water. The objectives of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol-water and ethyl acetate-water partitioning coefficients for PTA were -0.63 and -0.88, respectively, in agreement with the high water solubility of the compound. PTA hydrolysed rapidly in aqueous solution at pH 4 or lower, but was stable above pH 4. Incubation of PTA with 10 different soils at 25 degrees C showed three different first order degradation patterns: (i) rapid degradation observed for acid sandy soils with half life's ranging between 8 and 30 h decreasing with the soil content of organic matter, (ii) slow degradation in less acid sandy soils with half-lives of several days, and (iii) fast initial degradation with a concurrent solid phase-water partitioning reaction observed for non-acid, mostly clayey soils. The presence of clay silicates appears to retard the degradation of PTA, possibly through sorption. Degradation at 4 degrees C was generally of type (iii) and degradation rates were up to 800 times lower than at 25 degrees C. Sorption isotherms for the same set of soils were almost linear and generally showed very low sorption affinity with distribution coefficients in the range 0.01-0.22 l kg(-1) at a solution concentration of 1 mg l(-1) except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.


Assuntos
Indanos/metabolismo , Pteridium/química , Sesquiterpenos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Físico-Química/métodos , Indanos/análise , Indanos/química , Indanos/isolamento & purificação , Extratos Vegetais/química , Sesquiterpenos/análise , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Poluentes do Solo/análise , Soluções , Água
14.
J Chem Ecol ; 29(3): 771-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12757333

RESUMO

The distribution of ptaquiloside (PTA) was studied in four Danish bracken populations in order to evaluate the transfer of PTA from ferns to soil. Populations showed statistically significant differences in PTA contents of fronds and rhizomes despite large in-site variations. The highest concentrations were encountered in fronds with concentrations ranging between 213 and 2145 microg/g, while rhizomes had concentrations between 11 and 902 microg/g. PTA was present in soil materials in amounts of 0.22-8.49 microg/g but apparently with no correlation with PTA contents of fronds or rhizomes. Laboratory tests showed that water could leach PTA from bracken fronds, which is in support of the high soil contents observed at sites exposed to heavy showers just before sampling. The observed soil contents correspond to estimated soil solution concentrations of 200-8500 microg/liter, demonstrating a substantial risk of PTA contamination of surface water and groundwater.


Assuntos
Carcinógenos/metabolismo , Gleiquênias/metabolismo , Indanos/metabolismo , Sesquiterpenos , Terpenos/metabolismo , Animais , Dinamarca , Ecossistema , Folhas de Planta , Raízes de Plantas , Solo/análise
15.
J Environ Qual ; 31(6): 1901-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469840

RESUMO

The pH-dependent release of cadmium, copper, and lead from soil materials was studied by use of a stirred flow cell to quantify their release and release rates, and to evaluate the method as a test for the bonding strength and potential mobility of heavy metals in soils. Soil materials from sludge-amended and nonamended A horizons from a Thai coarse-textured Kandiustult and a Danish loamy Hapludalf were characterized and tested. For each soil sample, release experiments with steady state pH values in the range 2.9 to 7.1 and duration of 7 d were performed. The effluent was continuously collected and analyzed. Release rates and total releases were higher for the Hapludalf than the Kandiustult and higher for the sludge-amended soils than the nonamended soils. With two exceptions the relative release rates (release rate/total content of metal in soil) plotted vs. steady state pH followed the same curves for each metal, indicating similar bonding strengths. These curves could be described by a rate expression of the form: relative release rate = k[H+]a, with specific a (empirical constant) and k (rate constant) parameters for each metal demonstrating that metal release in these systems can be explained by proton-induced desorption and dissolution reactions. With decreasing pH, pronounced increases in release rates were observed in the sequence cadmium > lead > copper, which express the order of metal lability in the soils. The flow cell system is useful for comparison of metal releases as a function of soil properties, and can be used as a test to rank soils with respect to heavy metal leaching.


Assuntos
Cádmio/análise , Cobre/análise , Chumbo/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Adsorção , Cádmio/química , Cobre/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA