Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ultrasonics ; 140: 107312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599075

RESUMO

BACKGROUND: Shear wave elastography (SWE) is mainly used for stiffness estimation of large, homogeneous tissues, such as the liver and breasts. However, little is known about its accuracy and applicability in thin (∼0.5-2 mm) vessel walls. To identify possible performance differences among vendors, we quantified differences in measured wave velocities obtained by commercial SWE implementations of various vendors over different imaging depths in a vessel-mimicking phantom. For reference, we measured SWE values in the cylindrical inclusions and homogeneous background of a commercial SWE phantom. Additionally, we compared the accuracy between a research implementation and the commercially available clinical SWE on an Aixplorer ultrasound system in phantoms and in vivo in patients. METHODS: SWE measurements were performed over varying depths (0-35 mm) using three ultrasound machines with four ultrasound probes in the homogeneous 20 kPa background and cylindrical targets of 10, 40, and 60 kPa of a multi-purpose phantom (CIRS-040GSE) and in the anterior and posterior wall of a homogeneous polyvinyl alcohol vessel-mimicking phantom. These phantom data, along with in vivo SWE data of carotid arteries in 23 patients with a (prior) head and neck neoplasm, were also acquired in the research and clinical mode of the Aixplorer ultrasound machine. Machine-specific estimated phantom stiffness values (CIRS phantom) or wave velocities (vessel phantom) over all depths were visualized, and the relative error to the reference values and inter-frame variability (interquartile range/median) were calculated. Correlations between SWE values and target/vessel wall depth were explored in phantoms and in vivo using Spearman's correlations. Differences in wave velocities between the anterior and posterior arterial wall were assessed with Wilcoxon signed-rank tests. Intra-class correlation coefficients were calculated for a sample of ten patients as a measure of intra- and interobserver reproducibility of SWE analyses in research and clinical mode. RESULTS: There was a high variability in obtained SWE values among ultrasound machines, probes, and, in some cases, with depth. Compared to the homogeneous CIRS-background, this variation was more pronounced for the inclusions and the vessel-mimicking phantom. Furthermore, higher stiffnesses were generally underestimated. In the vessel-mimicking phantom, anterior wave velocities were (incorrectly) higher than posterior wave velocities (3.4-5.6 m/s versus 2.9-5.9 m/s, p ≤ 0.005 for 3/4 probes) and remarkably correlated with measurement depth for most machines (Spearman's ρ = -0.873-0.969, p < 0.001 for 3/4 probes). In the Aixplorer's research mode, this difference was smaller (3.3-3.9 m/s versus 3.2-3.6 m/s, p = 0.005) and values did not correlate with measurement depth (Spearman's ρ = 0.039-0.659, p ≥ 0.002). In vivo, wave velocities were higher in the posterior than the anterior vessel wall in research (left p = 0.001, right p < 0.001) but not in clinical mode (left: p = 0.114, right: p = 0.483). Yet, wave velocities correlated with vessel wall depth in clinical (Spearman's ρ = 0.574-0.698, p < 0.001) but not in research mode (Spearman's ρ = -0.080-0.466, p ≥ 0.003). CONCLUSIONS: We observed more variation in SWE values among ultrasound machines and probes in tissue with high stiffness and thin-walled geometry than in low stiffness, homogeneous tissue. Together with a depth-correlation in some machines, where carotid arteries have a fixed location, this calls for caution in interpreting SWE results in clinical practice for vascular applications.


Assuntos
Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Humanos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Reprodutibilidade dos Testes , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Desenho de Equipamento , Adulto
2.
Ultrasound Med Biol ; 50(3): 358-363, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103946

RESUMO

OBJECTIVE: Studies have indicated that adding 2-D quasi-static elastography to B-mode ultrasound imaging improved the specificity for malignant lesion detection, as malignant lesions are often stiffer (increased strain ratio) compared with benign lesions. This method is limited by its user dependency and so unsuitable for breast screening. To overcome this limitation, we implemented quasi-static elastography in an automated breast volume scanner (ABVS), which is an operator-independent 3-D ultrasound system and is especially useful for screening women with dense breasts. The study aim was to investigate if 3-D quasi-static elastography implemented in a clinically used ABVS can discriminate between benign and malignant breast lesions. METHODS: Volumetric breast ultrasound radiofrequency data sets of 82 patients were acquired before and after automated transducer lifting. Lesions were annotated and strain was calculated using an in-house-developed strain algorithm. Two strain ratio types were calculated per lesion: using axial and maximal principal strain (i.e., strain in dominant direction). RESULTS: Forty-four lesions were detected: 9 carcinomas, 23 cysts and 12 other benign lesions. A significant difference was found between malignant (median: 1.7, range: [1.0-3.2]) and benign (1.0, [0.6-1.9]) using maximal principal strain ratios. Axial strain ratio did not reveal a significant difference between benign (0.6, [-12.7 to 4.9]) and malignant lesions (0.8, [-3.5 to 5.1]). CONCLUSION: Three-dimensional strain imaging was successfully implemented on a clinically used ABVS to obtain, visualize and analyze in vivo strain images in three dimensions. Results revealed that maximal principal strain ratios are significantly increased in malignant compared with benign lesions.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Técnicas de Imagem por Elasticidade/métodos , Sensibilidade e Especificidade , Mama/diagnóstico por imagem , Mama/patologia , Ultrassonografia Mamária/métodos , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Diagnóstico Diferencial
3.
Med Phys ; 50(6): 3475-3489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36879348

RESUMO

BACKGROUND: Among available breast biopsy techniques, ultrasound (US)-guided biopsy is preferable because it is relatively inexpensive and provides live imaging feedback. The availability of magnetic resonance imaging (MRI)-3D US image fusion would facilitate US-guided biopsy even for US occult lesions to reduce the need for expensive and time-consuming MRI-guided biopsy. In this paper, we propose a novel Automated Cone-based Breast Ultrasound Scanning and Biopsy System (ACBUS-BS) to scan and biopsy breasts of women in prone position. It is based on a previously developed system, called ACBUS, that facilitates MRI-3D US image fusion imaging of the breast employing a conical container filled with coupling medium. PURPOSE: The purpose of this study was to introduce the ABCUS-BS system and demonstrate its feasibility for biopsy of US occult lesions. METHOD: The biopsy procedure with the ACBUS-BS comprises four steps: target localization, positioning, preparation, and biopsy. The biopsy outcome can be impacted by 5 types of errors: due to lesion segmentation, MRI-3D US registration, navigation, lesion tracking during repositioning, and US inaccuracy (due to sound speed difference between the sample and the one used for image reconstruction). For the quantification, we use a soft custom-made polyvinyl alcohol phantom (PVA) containing eight lesions (three US-occult and five US-visible lesions of 10 mm in diameter) and a commercial breast mimicking phantom with a median stiffness of 7.6 and 28 kPa, respectively. Errors of all types were quantified using the custom-made phantom. The error due to lesion tracking was also quantified with the commercial phantom. Finally, the technology was validated by biopsying the custom-made phantom and comparing the size of the biopsied material to the original lesion size. The average size of the 10-mm-sized lesions in the biopsy specimen was 7.00 ± 0.92 mm (6.33 ± 1.16 mm for US occult lesions, and 7.40 ± 0.55 mm for US-visible lesions). RESULTS: For the PVA phantom, the errors due to registration, navigation, lesion tracking during repositioning, and US inaccuracy were 1.33, 0.30, 2.12, and 0.55 mm. The total error was 4.01 mm. For the commercial phantom, the error due to lesion tracking was estimated at 1.10 mm, and the total error was 4.11 mm. Given these results, the system is expected to successfully biopsy lesions larger than 8.22 mm in diameter. Patient studies will have to be carried out to confirm this in vivo. CONCLUSION: The ACBUS-BS facilitates US-guided biopsy of lesions detected in pre-MRI and therefore might offer a low-cost alternative to MRI-guided biopsy. We demonstrated the feasibility of the approach by successfully taking biopsies of five US-visible and three US-occult lesions embedded in a soft breast-shaped phantom.


Assuntos
Neoplasias da Mama , Biópsia Guiada por Imagem , Humanos , Feminino , Estudos de Viabilidade , Ultrassonografia , Biópsia Guiada por Imagem/métodos , Mama/diagnóstico por imagem , Biópsia , Imageamento por Ressonância Magnética/métodos , Ultrassonografia de Intervenção/métodos , Neoplasias da Mama/diagnóstico por imagem
4.
Radiat Oncol ; 17(1): 130, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871069

RESUMO

BACKGROUND: Increased head and neck cancer (HNC) survival requires attention to long-term treatment sequelae. Irradiated HNC survivors have a higher ischemic stroke risk. However, the pathophysiology of radiation-induced vasculopathy is unclear. Arterial stiffness could be a biomarker. This study examined alterations in intima-media thickness (IMT) and stiffness-related parameters, shear wave (SWV) and pulse wave velocity (PWV), in irradiated compared to control carotids in unilateral irradiated patients. METHODS: Twenty-six patients, median 40.5 years, 5-15 years after unilateral irradiation for head and neck neoplasms underwent a bilateral carotid ultrasound using an Aixplorer system with SL18-5 and SL10-2 probes. IMT, SWV, and PWV were assessed in the proximal, mid, and distal common (CCA) and internal carotid artery (ICA). Plaques were characterized with magnetic resonance imaging. Measurements were compared between irradiated and control sides, and radiation dose effects were explored. RESULTS: CCA-IMT was higher in irradiated than control carotids (0.54 [0.50-0.61] vs. 0.50 [0.44-0.54] mm, p = 0.001). For stiffness, only anterior mid-CCA and posterior ICA SWV were significantly higher in the irradiated side. A radiation dose-effect was only (weakly) apparent for PWV (R2: end-systolic = 0.067, begin-systolic = 0.155). Ultrasound measurements had good-excellent intra- and interobserver reproducibility. Plaques had similar characteristics but were more diffuse in the irradiated side. CONCLUSIONS: Increased CCA-IMT and SWV in some segments were seen in irradiated carotids. These alterations, even in young patients, mark the need for surveillance of radiation-induced vasculopathy. TRIAL REGISTRATION: clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT04257968 ).


Assuntos
Neoplasias de Cabeça e Pescoço , Lesões por Radiação , Adulto , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/efeitos da radiação , Espessura Intima-Media Carotídea , Estudos Transversais , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Análise de Onda de Pulso , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Reprodutibilidade dos Testes , Fatores de Risco
5.
BMC Cancer ; 22(1): 244, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248013

RESUMO

BACKGROUND: With a growing, younger population of head and neck cancer survivors, attention to long-term side-effects of prior, often radiotherapeutic, treatment is warranted. Therefore, we studied the long-term cognitive effects in young adult patients irradiated for head and neck neoplasms (HNN). METHODS: Young to middle-aged adults with HNN (aged 18-40 years) and treated with unilateral neck irradiation ≥ 5 years before inclusion underwent cardiovascular risk and neuropsychological assessments and answered validated questionnaires regarding subjective cognitive complaints, fatigue, depression, quality of life, and cancer-specific distress. Additionally, magnetic resonance imaging (MRI) of the brain was performed to assess white matter hyperintensities (WMH), infarctions, and atrophy. RESULTS: Twenty-nine patients (aged 24-61, 13 men) median 9.2 [7.3-12.9] years post-treatment were included. HNN patients performed worse in episodic memory (Z-score = -1.16 [-1.58-0.34], p < 0.001) and reported more fatigue symptoms (Z-score = 1.75 [1.21-2.00], p < 0.001) compared to normative data. Furthermore, patients had a high level of fear of tumor recurrence (13 patients [44.8%]) and a heightened speech handicap index (13 patients [44.8%]). Only a small number of neurovascular lesions were found (3 infarctions in 2 patients and 0.11 [0.00-0.40] mL WMH), unrelated to the irradiated side. Cognitive impairment was not associated with WMH, brain atrophy, fatigue, or subjective speech problems. CONCLUSIONS: HNN patients showed impairments in episodic memory and an increased level of fatigue ≥ 5 years after radiotherapy compared to normative data. Cognitive impairments could not be explained by WMH or brain atrophy on brain MRI or psychological factors. TRIAL REGISTRATION: Clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT04257968 ).


Assuntos
Encéfalo/patologia , Sobreviventes de Câncer/psicologia , Neoplasias de Cabeça e Pescoço/psicologia , Lesões por Radiação/psicologia , Substância Branca/patologia , Adulto , Atrofia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Depressão/etiologia , Fadiga/etiologia , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Tamanho do Órgão , Angústia Psicológica , Qualidade de Vida , Substância Branca/diagnóstico por imagem , Adulto Jovem
6.
IEEE Trans Med Imaging ; 40(4): 1229-1239, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33428568

RESUMO

Breast cancer is one of the most diagnosed types of cancer worldwide. Volumetric ultrasound breast imaging, combined with MRI can improve lesion detection rate, reduce examination time, and improve lesion diagnosis. However, to our knowledge, there are no 3D US breast imaging systems available that facilitate 3D US - MRI image fusion. In this paper, a novel Automated Cone-based Breast Ultrasound System (ACBUS) is introduced. The system facilitates volumetric ultrasound acquisition of the breast in a prone position without deforming it by the US transducer. Quality of ACBUS images for reconstructions at different voxel sizes (0.25 and 0.50 mm isotropic) was compared to quality of the Automated Breast Volumetric Scanner (ABVS) (Siemens Ultrasound, Issaquah, WA, USA) in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and resolution using a custom made phantom. The ACBUS image data were registered to MRI image data utilizing surface matching and the registration accuracy was quantified using an internal marker. The technology was also evaluated in vivo. The phantom-based quantitative analysis demonstrated that ACBUS can deliver volumetric breast images with an image quality similar to the images delivered by a currently commercially available Siemens ABVS. We demonstrate on the phantom and in vivo that ACBUS enables adequate MRI-3D US fusion. To our conclusion, ACBUS might be a suitable candidate for a second-look breast US exam, patient follow-up, and US guided biopsy planning.


Assuntos
Neoplasias da Mama , Ultrassonografia Mamária , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ultrassonografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-29994473

RESUMO

Automated breast volume scanner (ABVS) is an ultrasound imaging modality used in breast cancer screening. It has high sensitivity but limited specificity as it is hard to discriminate between benign and malignant lesions by echogenic properties. Specificity might be improved by shear strain imaging as malignant lesions, firmly bonded to its host tissue, show different shear patterns compared to benign lesions, often loosely bonded. Therefore, 3-D quasi-static elastography was implemented in an ABVS-like system. Plane wave instead of conventional focused transmissions were used to reduce scan times within a single breath hold. A 3-D strain tensor was obtained and shear strains were reconstructed in phantoms containing firmly and loosely bonded lesions. Experiments were also simulated in finite-element models (FEMs). Experimental results, confirmed by FEM-results, indicated that loosely bonded lesions showed increased maximal shear strains (~2.5%) and different shear patterns compared to firmly bonded lesions (~0.9%). To conclude, we successfully implemented 3-D elastography in an ABVS-like system to assess lesion bonding by shear strain imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ultrassonografia Mamária/métodos , Algoritmos , Suspensão da Respiração , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Imagens de Fantasmas
8.
Ultrasound Med Biol ; 42(10): 2493-503, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27401958

RESUMO

The goal of this study was to assess whether it is viable to implement plane-wave imaging in the Automated Breast Volume Scanner (ABVS) to speed up the acquisition process. This would allow breath-hold examinations, thus reducing breathing artifacts without loss of imaging quality. A calibration phantom was scanned in an Automated Breast Volume Scanner-mimicking setup using both dynamic receive focusing with a fixed transmit focus and unfocused plane-wave compounding. Contrast-to-noise ratio and lateral resolution were compared using two beamforming schemes, delay-and-sum and Stolt's f-k algorithm. Plane-wave compounding using only 11 compounding angles and Stolt's f-k algorithm provided image quality similar to that of focused transmission with dynamic receive focusing (contrast-to-noise ratios = 10.3 and 10.8 dB for Stolt's f-k migration with Hann apodization and focused transmission, respectively; full width at half-maximum = 0.38 and 0.4 mm, respectively; all at 30-mm depth with transmit focus at 30 mm) with a higher signal-to-noise ratio at all depths. Furthermore, a full 3-D volume of a breast-mimicking phantom was scanned using this optimal set of compounding angles and different speeds (10, 20 and 50 mm/s) to assess the impact of scanning time on image quality. Only minor differences in contrast-to-noise ratio were found (cyst 1: 6.0 ± 0.3 dB, cyst 2: 5.5 ± 0.2 dB, cyst 3: 5.7 ± 0.5 dB). These differences could not be correlated to the movement speeds, indicating that acquisition speed does not significantly affect image quality. Our results suggest that plane-wave imaging will enable breath-hold automated breast volume scanning examinations, eliminating breathing artifacts while otherwise preserving similar image quality.


Assuntos
Mama/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Ultrassonografia Mamária/instrumentação , Algoritmos , Artefatos , Simulação por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
9.
Phys Med Biol ; 61(7): 2665-79, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976196

RESUMO

In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s(-1)) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound quasi-static elastography on an ABVS-like system and to reduce scan times within one breath-hold (~10 s) by plane-wave acquisitions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia Mamária/instrumentação , Automação , Feminino , Humanos , Imageamento Tridimensional/métodos
10.
Radiother Oncol ; 113(3): 359-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25466374

RESUMO

BACKGROUND AND PURPOSE: Carotid artery vasculopathy is a long-term complication of radiotherapy (RT) of the neck. We investigated the change in carotid intima media thickness (IMT) and the incidence of ischemic stroke in the first 7 years after radiotherapy (RT) of the neck. MATERIALS AND METHODS: A multicentre prospective cohort study among patients treated for Head and Neck Cancer (HNC) assessed carotid IMT at baseline (before RT) and after a median of 7 years follow-up. We also screened for cerebrovascular risk factors and events. RESULTS: 48 patients underwent IMT measurement at baseline and follow-up (median age 61 years, range 29-87). Mean IMT of the irradiated common carotid arteries was 0.64mm at baseline and 0.74mm at follow-up (p=0.002). Mean delta IMT in the irradiated and non-irradiated common carotid arteries were 0.11 and 0.02mm (p=0.03). Incidence rate of stroke in our cohort, compared to the Dutch population was 8.9 versus 1.5 per 1.000 person years. CONCLUSIONS: IMT in irradiated carotid arteries was significantly increased in the first 7years after RT. The incidence rate of stroke was six fold increased. Patients treated with RT for HNC have sustained risk for developing atherosclerosis of the carotid arteries and future stroke.


Assuntos
Aterosclerose/epidemiologia , Espessura Intima-Media Carotídea/estatística & dados numéricos , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Acidente Vascular Cerebral/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/efeitos da radiação , Estudos de Coortes , Comorbidade , Progressão da Doença , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estudos Prospectivos , Risco , Fatores de Risco , Resultado do Tratamento
11.
IEEE Trans Biomed Eng ; 58(11): 3143-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21846601

RESUMO

Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic gelatin/agar phantom with stiff targets was manufactured to obtain pre- and post-loading ultrasound radio frequency (RF) data from a linear array transducer. The RF data were used to compute displacement and strain images, from which the distribution of elasticity was reconstructed using an inverse FE-based approach. The FE model was subsequently used to predict target displacements upon application of different boundary and loading conditions to the phantom. The influence of geometry was investigated by application of the technique to a breast-shaped phantom. The distribution of elasticity in the phantoms as determined from the strain distribution agreed well with results from mechanical testing. Upon application of different boundary and loading conditions to the cubic phantom, the FE model-predicted target motion were consistent with ultrasound measurements. The FE-based approach could also accurately predict the displacement of the target upon compression and indentation of the breast-shaped phantom. This study provides experimental evidence that organ geometry and boundary conditions surrounding the organ are important factors influencing target motion. In future work, the technique presented in this paper could be used for preoperative planning of minimally invasive surgical interventions.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Análise de Elementos Finitos , Modelos Biológicos , Cirurgia Assistida por Computador/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Feminino , Humanos , Movimento , Imagens de Fantasmas , Estresse Mecânico , Ultrassonografia Mamária/métodos
12.
Ultrasound Med Biol ; 35(12): 2031-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19854565

RESUMO

The goal of this study was to investigate the applicability of conventional 2-D displacement and strain imaging techniques to phased array radiofrequency (RF) data. Furthermore, the possible advantages of aligning and stretching techniques for the reduction of decorrelation artefacts was examined. Data from both realistic simulations and phantoms were used in this study. Recently, the used processing concepts were successfully applied to linear array data. However, their applicability to sector scan data is not trivial because of the polar grid. Homogeneous and inhomogeneous tissue phantoms were simulated at a range of strains (0 to 5%) using Field II((c)). The inhomogeneous phantom, a commonly used tumor/lesion model, was also constructed using gelatin/agar solutions. A coarse-to-fine displacement algorithm was applied, using aligning and stretching to enhance re-correlation. Vertical and horizontal strains were reconstructed from the axial and lateral displacements. Results revealed that the error on displacement estimates was lower when using 2-D data windows rather than 1-D windows. For regions at large depths and large insonification angles, the allowed lateral window size was limited. Still, 1-D windows resulted in larger errors. The re-correlation techniques resulted in a significant increase in the elastographic signal-to-noise ratio (SNRe) and elastographic contrast-to-noise ratio (CNRe) of the vertical and horizontal strain components. An increase of the SNRe of 5-20 dB was observed over a range of strains (0.5 to 5.0%). In the inhomogeneous phantom, a vertical SNRe of 27.7 dB and a horizontal SNRe of 16.7 dB were measured in the background. The vertical and horizontal CNRe were 35 dB and 23.1 dB, respectively. For the experimental data, lower SNRe (vertical: 19.1 dB; horizontal: 11.4 dB) and CNRe (vertical: 33.3 dB; horizontal: 12.5 dB) were found. In conclusion, 2-D window matching of sector scan data is feasible and outperforms 1-D window matching. Furthermore, the use of re-correlation techniques enhances both precision and contrast of strain images.


Assuntos
Algoritmos , Tecido Conjuntivo/fisiologia , Técnicas de Imagem por Elasticidade/instrumentação , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Transdutores , Módulo de Elasticidade/fisiologia , Humanos , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico
13.
Ultrasound Med Biol ; 35(5): 796-812, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19282094

RESUMO

In elastography, several methods for 2-D strain imaging have been introduced, based on both raw frequency (RF) data and speckle-tracking. Although the precision and lesion detectability of axial strain imaging in terms of elastographic signal-to-noise ratio (SNRe) and elastographic contrast-to-noise ratio (CNRe) have been reported extensively, analysis of lateral precision is still lacking. In this paper, the performance of different 2-D correlation RF- and envelope-based strain estimation methods was evaluated using simulation data and phantom experiments. Besides window size and interpolation methods for subsample displacement estimation, the influence of recorrelation techniques was examined. Precision and contrast of the measured displacements and strains were assessed using the difference between modeled and measured displacements, SNRe and CNRe. In general, a 2-D coarse-to-fine displacement estimation method is favored, using envelope data for window sizes exceeding the theoretical upper bound for strain estimation. Using 2-D windows of RF data resulted in better displacement estimates for both the axial and lateral direction than 1-D RF-based or envelope-based techniques. Obtaining subsample lateral displacement estimates by fitting a predefined shape through the cross-correlation function (CCF) yielded results similar to those obtained with up-sampling of RF data in the lateral direction. Using a CCF model was favored because of the decreased computation time. Local aligning and stretching of the windows (recorrelation) resulted in an increase of 2-17 and 6-7 dB in SNRe for axial and lateral strain estimates, respectively, over a range of strains (0.5 to 5.0%). For a simulated inhomogeneous phantom (2.0% applied strain), the measured axial and lateral SNRes were 29.2 and 20.2 dB, whereas the CNRes were 50.2 dB and 31.5 dB, respectively. For the experimental data, lower SNRe (axial: 28.5 dB; lateral: 17.5 dB) and CNRe (axial: 39.3 dB; lateral: 31 dB) were found. In conclusion, a coarse-to-fine approach is favored using RF data on a fine scale. The use of 2D parabolic interpolation is favored to obtain subsample displacement estimates. Recorrelation techniques, such as local aligning and stretching, increase SNRe and CNRe in both directions.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA