Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857303

RESUMO

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Assuntos
Anormalidades Múltiplas , Condrócitos , Modelos Animais de Doenças , Face , Doenças Hematológicas , Histona Desmetilases , Doenças Vestibulares , Animais , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Camundongos , Face/anormalidades , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Condrócitos/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Humanos , Camundongos Knockout , Fenótipo , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide
2.
Cancer Res ; 83(11): 1905-1916, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36989344

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE: Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Metilação de DNA , Neoplasias Pancreáticas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Neoplasias Pancreáticas
3.
NAR Genom Bioinform ; 3(2): lqab025, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33937763

RESUMO

While DNA methylation (DNAm) is the most-studied epigenetic mark, few recent studies probe the breadth of publicly available DNAm array samples. We collectively analyzed 35 360 Illumina Infinium HumanMethylation450K DNAm array samples published on the Gene Expression Omnibus. We learned a controlled vocabulary of sample labels by applying regular expressions to metadata and used existing models to predict various sample properties including epigenetic age. We found approximately two-thirds of samples were from blood, one-quarter were from brain and one-third were from cancer patients. About 19% of samples failed at least one of Illumina's 17 prescribed quality assessments; signal distributions across samples suggest modifying manufacturer-recommended thresholds for failure would make these assessments more informative. We further analyzed DNAm variances in seven tissues (adipose, nasal, blood, brain, buccal, sperm and liver) and characterized specific probes distinguishing them. Finally, we compiled DNAm array data and metadata, including our learned and predicted sample labels, into database files accessible via the recountmethylation R/Bioconductor companion package. Its vignettes walk the user through some analyses contained in this paper.

4.
Nat Methods ; 17(12): 1191-1199, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230324

RESUMO

Probing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231). The single-molecule resolution allows footprinting of protein and nucleosome binding, and determination of the combinatorial promoter epigenetic signature on individual molecules. Long-read sequencing makes it possible to robustly assign reads to haplotypes, allowing us to generate a fully phased human epigenome, consisting of chromosome-level allele-specific profiles of CpG methylation and chromatin accessibility. We further apply this to a breast cancer model to evaluate differential methylation and accessibility between cancerous and noncancerous cells.


Assuntos
Neoplasias da Mama/genética , Cromatina/genética , Metilação de DNA/genética , Sequenciamento por Nanoporos/métodos , Linhagem Celular Tumoral , Ilhas de CpG/genética , DNA/metabolismo , Epigenoma/genética , Feminino , Genoma Humano/genética , Humanos , Células MCF-7 , Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA
5.
J Clin Invest ; 130(11): 6034-6040, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780721

RESUMO

Air pollution involving particulate matter smaller than 2.5 µm in size (PM2.5) is the world's leading environmental risk factor contributing to mortality through cardiometabolic pathways. In this study, we modeled early life exposure using chow-fed C57BL/6J male mice that were exposed to real-world inhaled, concentrated PM2.5 (~10 times ambient levels/~60-120 µg/m3) or filtered air over a 14-week period. We investigated the effects of PM2.5 on phenotype, the transcriptome, and chromatin accessibility and compared these with the effects of a prototypical high-fat diet (HFD) as well as cessation of exposure on phenotype reversibility. Exposure to PM2.5 impaired glucose and insulin tolerance and reduced energy expenditure and 18FDG-PET uptake in brown adipose tissue. Multiple differentially expressed gene clusters in pathways involving metabolism and circadian rhythm were noted in insulin-responsive tissues. Although the magnitude of transcriptional change detected with PM2.5 exposure was lower than that observed with a HFD, the degree of alteration in chromatin accessibility after PM2.5 exposure was significant. The novel chromatin remodeler SMARCA5 (SWI/SNF complex) was regulated in response to PM2.5 exposure, the cessation of which was associated with a reversal of insulin resistance and restoration of chromatin accessibility and nucleosome positioning near transcription start sites, as well as a reversal of exposure-induced changes in the transcriptome, including SMARCA5. These changes indicate pliable epigenetic control mechanisms following cessation of exposure.


Assuntos
Tecido Adiposo Marrom , Poluentes Atmosféricos/toxicidade , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Resistência à Insulina , Adenosina Trifosfatases/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Fluordesoxiglucose F18/farmacologia , Camundongos , Tomografia por Emissão de Pósitrons , Transcriptoma/efeitos dos fármacos
6.
Am J Med Genet B Neuropsychiatr Genet ; 183(1): 61-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503409

RESUMO

Recent genome-wide association studies (GWAS) identified numerous schizophrenia (SZ) and Alzheimer's disease (AD) associated loci, most outside protein-coding regions and hypothesized to affect gene transcription. We used a massively parallel reporter assay to screen, 1,049 SZ and 30 AD variants in 64 and nine loci, respectively for allele differences in driving reporter gene expression. A library of synthetic oligonucleotides assaying each allele five times was transfected into K562 chronic myelogenous leukemia lymphoblasts and SK-SY5Y human neuroblastoma cells. One hundred forty eight variants showed allelic differences in K562 and 53 in SK-SY5Y cells, on average 2.6 variants per locus. Nine showed significant differences in both lines, a modest overlap reflecting different regulatory landscapes of these lines that also differ significantly in chromatin marks. Eight of nine were in the same direction. We observe no preference for risk alleles to increase or decrease expression. We find a positive correlation between the number of SNPs in linkage disequilibrium and the proportion of functional SNPs supporting combinatorial effects that may lead to haplotype selection. Our results prioritize future functional follow up of disease associated SNPs to determine the driver GWAS variant(s), at each locus and enhance our understanding of gene regulation dynamics.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica/genética , Esquizofrenia/genética , Alelos , Linhagem Celular Tumoral , Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos , Humanos , Células K562 , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas
7.
Genome Biol ; 20(1): 255, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779666

RESUMO

BACKGROUND: The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin conformation varies in the human population, or whether DNA sequence variation between individuals influences 3D chromatin conformation. RESULTS: To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify thousands of regions across the genome where 3D chromatin conformation varies between individuals and find that this variation is often accompanied by variation in gene expression, histone modifications, and transcription factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk. CONCLUSION: Our results demonstrate that common DNA sequence variants can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation than previously recognized.


Assuntos
Sequência de Bases , Variação Genética , Genoma Humano , Conformação de Ácido Nucleico , Epigenoma , Humanos , Locos de Características Quantitativas , Transcriptoma
8.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31557133

RESUMO

Kabuki syndrome 1 (KS1) is a Mendelian disorder of the epigenetic machinery caused by mutations in the gene encoding KMT2D, which methylates lysine 4 on histone H3 (H3K4). KS1 is characterized by intellectual disability, postnatal growth retardation, and distinct craniofacial dysmorphisms. A mouse model (Kmt2d+/ßGeo) exhibits features of the human disorder and has provided insight into other phenotypes; however, the mechanistic basis of skeletal abnormalities and growth retardation remains elusive. Using high-resolution micro-CT, we show that Kmt2d+/ßGeo mice have shortened long bones and ventral bowing of skulls. In vivo expansion of growth plates within skulls and long bones suggests disrupted endochondral ossification as a common disease mechanism. Stable chondrocyte cell lines harboring inactivating mutations in Kmt2d exhibit precocious differentiation, further supporting this mechanism. A known inducer of chondrogenesis, SOX9, and its targets show markedly increased expression in Kmt2d-/- chondrocytes. By transcriptome profiling, we identify Shox2 as a putative KMT2D target. We propose that decreased KMT2D-mediated H3K4me3 at Shox2 releases Sox9 inhibition and thereby leads to enhanced chondrogenesis, providing a potentially novel and plausible explanation for precocious chondrocyte differentiation. Our findings provide insight into the pathogenesis of growth retardation in KS1 and suggest therapeutic approaches for this and related disorders.


Assuntos
Anormalidades Múltiplas/genética , Diferenciação Celular/genética , Condrogênese/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/deficiência , Proteínas de Homeodomínio/metabolismo , Proteína de Leucina Linfoide-Mieloide/deficiência , Crânio/crescimento & desenvolvimento , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Animais , Condrócitos/patologia , Modelos Animais de Doenças , Face/patologia , Feminino , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Oxigênio/metabolismo , Fatores de Transcrição SOX9/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem , Doenças Vestibulares/patologia , Microtomografia por Raio-X
9.
Nucleic Acids Res ; 47(19): e117, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31392989

RESUMO

In the study of DNA methylation, genetic variation between species, strains or individuals can result in CpG sites that are exclusive to a subset of samples, and insertions and deletions can rearrange the spatial distribution of CpGs. How to account for this variation in an analysis of the interplay between sequence variation and DNA methylation is not well understood, especially when the number of CpG differences between samples is large. Here, we use whole-genome bisulfite sequencing data on two highly divergent mouse strains to study this problem. We show that alignment to personal genomes is necessary for valid methylation quantification. We introduce a method for including strain-specific CpGs in differential analysis, and show that this increases power. We apply our method to a human normal-cancer dataset, and show this improves accuracy and power, illustrating the broad applicability of our approach. Our method uses smoothing to impute methylation levels at strain-specific sites, thereby allowing strain-specific CpGs to contribute to the analysis, while accounting for differences in the spatial occurrences of CpGs. Our results have implications for joint analysis of genetic variation and DNA methylation using bisulfite-converted DNA, and unlocks the use of personal genomes for addressing this question.


Assuntos
Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Genoma Humano/genética , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA
10.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31465303

RESUMO

Chromatin modifiers act to coordinate gene expression changes critical to neuronal differentiation from neural stem/progenitor cells (NSPCs). Lysine-specific methyltransferase 2D (KMT2D) encodes a histone methyltransferase that promotes transcriptional activation and is frequently mutated in cancers and in the majority (>70%) of patients diagnosed with the congenital, multisystem intellectual disability disorder Kabuki syndrome 1 (KS1). Critical roles for KMT2D are established in various non-neural tissues, but the effects of KMT2D loss in brain cell development have not been described. We conducted parallel studies of proliferation, differentiation, transcription, and chromatin profiling in KMT2D-deficient human and mouse models to define KMT2D-regulated functions in neurodevelopmental contexts, including adult-born hippocampal NSPCs in vivo and in vitro. We report cell-autonomous defects in proliferation, cell cycle, and survival, accompanied by early NSPC maturation in several KMT2D-deficient model systems. Transcriptional suppression in KMT2D-deficient cells indicated strong perturbation of hypoxia-responsive metabolism pathways. Functional experiments confirmed abnormalities of cellular hypoxia responses in KMT2D-deficient neural cells and accelerated NSPC maturation in vivo. Together, our findings support a model in which loss of KMT2D function suppresses expression of oxygen-responsive gene programs important to neural progenitor maintenance, resulting in precocious neuronal differentiation in a mouse model of KS1.


Assuntos
Anormalidades Múltiplas/genética , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/genética , Proteínas de Ligação a DNA/deficiência , Face/anormalidades , Doenças Hematológicas/genética , Histona-Lisina N-Metiltransferase/deficiência , Proteína de Leucina Linfoide-Mieloide/deficiência , Proteínas de Neoplasias/deficiência , Células-Tronco Neurais/patologia , Neurônios/patologia , Doenças Vestibulares/genética , Anormalidades Múltiplas/patologia , Animais , Encéfalo/citologia , Hipóxia Celular/genética , Proliferação de Células/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Face/patologia , Feminino , Fibroblastos , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Oxigênio/metabolismo , Cultura Primária de Células , RNA-Seq , Análise de Célula Única , Pele/citologia , Pele/patologia , Doenças Vestibulares/patologia
11.
Genome Res ; 29(4): 532-542, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858344

RESUMO

Coding variants in epigenetic regulators are emerging as causes of neurological dysfunction and cancer. However, a comprehensive effort to identify disease candidates within the human epigenetic machinery (EM) has not been performed; it is unclear whether features exist that distinguish between variation-intolerant and variation-tolerant EM genes, and between EM genes associated with neurological dysfunction versus cancer. Here, we rigorously define 295 genes with a direct role in epigenetic regulation (writers, erasers, remodelers, readers). Systematic exploration of these genes reveals that although individual enzymatic functions are always mutually exclusive, readers often also exhibit enzymatic activity (dual-function EM genes). We find that the majority of EM genes are very intolerant to loss-of-function variation, even when compared to the dosage sensitive transcription factors, and we identify 102 novel EM disease candidates. We show that this variation intolerance is driven by the protein domains encoding the epigenetic function, suggesting that disease is caused by a perturbed chromatin state. We then describe a large subset of EM genes that are coexpressed within multiple tissues. This subset is almost exclusively populated by extremely variation-intolerant genes and shows enrichment for dual-function EM genes. It is also highly enriched for genes associated with neurological dysfunction, even when accounting for dosage sensitivity, but not for cancer-associated EM genes. Finally, we show that regulatory regions near epigenetic regulators are genetically important for common neurological traits. These findings prioritize novel disease candidate EM genes and suggest that this coexpression plays a functional role in normal neurological homeostasis.


Assuntos
Epigênese Genética , Doenças do Sistema Nervoso/genética , Polimorfismo Genético , Montagem e Desmontagem da Cromatina , Humanos , Mutação com Perda de Função , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cancer Res ; 77(21): e39-e42, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092936

RESUMO

Multiomics experiments are increasingly commonplace in biomedical research and add layers of complexity to experimental design, data integration, and analysis. R and Bioconductor provide a generic framework for statistical analysis and visualization, as well as specialized data classes for a variety of high-throughput data types, but methods are lacking for integrative analysis of multiomics experiments. The MultiAssayExperiment software package, implemented in R and leveraging Bioconductor software and design principles, provides for the coordinated representation of, storage of, and operation on multiple diverse genomics data. We provide the unrestricted multiple 'omics data for each cancer tissue in The Cancer Genome Atlas as ready-to-analyze MultiAssayExperiment objects and demonstrate in these and other datasets how the software simplifies data representation, statistical analysis, and visualization. The MultiAssayExperiment Bioconductor package reduces major obstacles to efficient, scalable, and reproducible statistical analysis of multiomics data and enhances data science applications of multiple omics datasets. Cancer Res; 77(21); e39-42. ©2017 AACR.


Assuntos
Genômica , Neoplasias/genética , Software , Biologia Computacional , Conjuntos de Dados como Assunto , Genoma Humano , Humanos
13.
Anal Chem ; 89(6): 3517-3523, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221771

RESUMO

As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.


Assuntos
Androgênios/metabolismo , Hiperinsulinismo/metabolismo , Metabolômica , Resveratrol/metabolismo , Adolescente , Androgênios/sangue , Animais , Arabidopsis/química , Arabidopsis/metabolismo , Linhagem Celular , Feminino , Humanos , Hiperinsulinismo/sangue , Lactente , Fígado/química , Fígado/metabolismo , Células MCF-7 , Espectrometria de Massas , Camundongos , Folhas de Planta/química , Folhas de Planta/metabolismo , Resveratrol/análise
14.
Proc Natl Acad Sci U S A ; 114(1): 125-130, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27999180

RESUMO

Kabuki syndrome is a Mendelian intellectual disability syndrome caused by mutations in either of two genes (KMT2D and KDM6A) involved in chromatin accessibility. We previously showed that an agent that promotes chromatin opening, the histone deacetylase inhibitor (HDACi) AR-42, ameliorates the deficiency of adult neurogenesis in the granule cell layer of the dentate gyrus and rescues hippocampal memory defects in a mouse model of Kabuki syndrome (Kmt2d+/ßGeo). Unlike a drug, a dietary intervention could be quickly transitioned to the clinic. Therefore, we have explored whether treatment with a ketogenic diet could lead to a similar rescue through increased amounts of beta-hydroxybutyrate, an endogenous HDACi. Here, we report that a ketogenic diet in Kmt2d+/ßGeo mice modulates H3ac and H3K4me3 in the granule cell layer, with concomitant rescue of both the neurogenesis defect and hippocampal memory abnormalities seen in Kmt2d+/ßGeo mice; similar effects on neurogenesis were observed on exogenous administration of beta-hydroxybutyrate. These data suggest that dietary modulation of epigenetic modifications through elevation of beta-hydroxybutyrate may provide a feasible strategy to treat the intellectual disability seen in Kabuki syndrome and related disorders.


Assuntos
Anormalidades Múltiplas/dietoterapia , Dieta Cetogênica/métodos , Face/anormalidades , Doenças Hematológicas/dietoterapia , Hipocampo/metabolismo , Histonas/biossíntese , Deficiência Intelectual/dietoterapia , Neurogênese/fisiologia , Doenças Vestibulares/dietoterapia , Ácido 3-Hidroxibutírico/metabolismo , Anormalidades Múltiplas/genética , Animais , Modelos Animais de Doenças , Doenças Hematológicas/genética , Hipocampo/citologia , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/genética , Neurogênese/genética , Doenças Vestibulares/genética
15.
Genome Res ; 26(12): 1730-1741, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27737935

RESUMO

DNA methylation at the 5-position of cytosine (5mC) is an epigenetic modification that regulates gene expression and cellular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), providing an active mechanism for DNA demethylation, and it may also provide its own regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and hydroxymethylation maps at single-base resolution in human normal liver and lung as well as paired tumor tissues. We found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active genes, which exhibit a bimodal distribution of 5hmC around CGI that corresponds to H3K4me1 modifications. Hydroxymethylation on promoters, gene bodies, and transcription termination regions (TTRs) showed strong positive correlation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes revealed that 5hmC is significantly enriched in both tissue-specific DMRs (t-DMRs) and cancer-specific DMRs (c-DMRs), and 5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome, hydroxymethylome, and histone modifications during tumorigenesis.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Fígado/química , Pulmão/química , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , 5-Metilcitosina/análise , Ilhas de CpG , DNA/química , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Fígado/patologia , Pulmão/patologia , Especificidade de Órgãos , Regiões Promotoras Genéticas
16.
Brief Bioinform ; 17(4): 603-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26463000

RESUMO

Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods.


Assuntos
Genômica , Biologia Computacional , MicroRNAs , Análise de Sequência de DNA
17.
Sci Rep ; 5: 17911, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648411

RESUMO

DNA methylation is an epigenetic modification with important functions in development. Large-scale loss of DNA methylation is a hallmark of cancer. Recent work has identified large genomic blocks of hypomethylation associated with cancer, EBV transformation and replicative senescence, all of which change the proportion of actively proliferating cells within the population measured. We asked if replication or cell-cycle arrest affects the global levels of methylation or leads to hypomethylated blocks as observed in other settings. We used fluorescence activated cell sorting to isolate primary dermal fibroblasts in G0, G1 and G2 based on DNA content and Ki67 staining. We additionally examined G0 cells arrested by contact inhibition for one week to determine the effects of extended arrest. We analyzed genome wide DNA methylation from sorted cells using whole genome bisulfite sequencing. This analysis demonstrated no global changes or large-scale hypomethylated blocks in any of the examined cell cycle phases, indicating that global levels of methylation are stable with replication and arrest.


Assuntos
Pontos de Checagem do Ciclo Celular , Metilação de DNA , Replicação do DNA , Animais , Senescência Celular/genética , Ilhas de CpG , Epigênese Genética , Epigenômica , Fibroblastos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Antígeno Ki-67/metabolismo
18.
Genome Biol ; 16: 180, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26316348

RESUMO

Analysis of Hi-C data has shown that the genome can be divided into two compartments called A/B compartments. These compartments are cell-type specific and are associated with open and closed chromatin. We show that A/B compartments can reliably be estimated using epigenetic data from several different platforms: the Illumina 450 k DNA methylation microarray, DNase hypersensitivity sequencing, single-cell ATAC sequencing and single-cell whole-genome bisulfite sequencing. We do this by exploiting that the structure of long-range correlations differs between open and closed compartments. This work makes A/B compartment assignment readily available in a wide variety of cell types, including many human cancers.


Assuntos
Cromatina/química , Metilação de DNA , Epigênese Genética , Composição de Bases , DNA/química , Genômica , Humanos , Masculino , Taxa de Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/genética , Análise de Sequência de DNA
19.
Genome Biol ; 16: 80, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25886480

RESUMO

BACKGROUND: Aging and sun exposure are the leading causes of skin cancer. It has been shown that epigenetic changes, such as DNA methylation, are well established mechanisms for cancer, and also have emerging roles in aging and common disease. Here, we directly ask whether DNA methylation is altered following skin aging and/or chronic sun exposure in humans. RESULTS: We compare epidermis and dermis of both sun-protected and sun-exposed skin derived from younger subjects (under 35 years old) and older subjects (over 60 years old), using the Infinium HumanMethylation450 array and whole genome bisulfite sequencing. We observe large blocks of the genome that are hypomethylated in older, sun-exposed epidermal samples, with the degree of hypomethylation associated with clinical measures of photo-aging. We replicate these findings using whole genome bisulfite sequencing, comparing epidermis from an additional set of younger and older subjects. These blocks largely overlap known hypomethylated blocks in colon cancer and we observe that these same regions are similarly hypomethylated in squamous cell carcinoma samples. CONCLUSIONS: These data implicate large scale epigenomic change in mediating the effects of environmental damage with photo-aging.


Assuntos
Envelhecimento/genética , Epiderme/metabolismo , Genômica , Envelhecimento da Pele/efeitos da radiação , Luz Solar/efeitos adversos , Adulto , Idoso , Metilação de DNA/efeitos da radiação , Epigênese Genética , Epigenômica , Feminino , Biblioteca Gênica , Voluntários Saudáveis , Humanos , Masculino , Análise de Sequência de DNA , Envelhecimento da Pele/fisiologia , Neoplasias Cutâneas/etiologia
20.
Sci Transl Med ; 6(256): 256ra135, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273096

RESUMO

Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d(+/ßGeo) mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d(+/ßGeo) mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome.


Assuntos
Anormalidades Múltiplas/tratamento farmacológico , Encéfalo/fisiopatologia , Face/anormalidades , Doenças Hematológicas/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Doenças Vestibulares/tratamento farmacológico , Anormalidades Múltiplas/fisiopatologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Face/fisiopatologia , Feminino , Doenças Hematológicas/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/genética , Neurogênese , Doenças Vestibulares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA