Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(1): 251-63, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24265312

RESUMO

CREB-binding protein (CBP)/p300 interacting transactivator with glutamic acid (Glu) and aspartic acid (Asp)-tail 2 (Cited2) was recently shown to be essential for gluconeogenesis in the adult mouse. The metabolic function of Cited2 in mouse embryonic stem cells (mESCs) remains elusive. In the current study, the metabolism of glucose was investigated in mESCs, which contained a deletion in the gene for Cited2 (Cited2(Δ/-)). Compared with its parental wild type counterpart, Cited2(Δ/-) ESCs have enhanced glycolysis, alternations in mitochondria morphology, reduced glucose oxidation, and decreased ATP content. Cited2 is recruited to the hexokinase 1 (HK1) gene promoter to regulate transcription of HK1, which coordinates glucose metabolism in wild type ESCs. Reduced glucose oxidation and enhanced glycolytic activity in Cited2(Δ/-) ESCs correlates with defective differentiation during hypoxia, which is reflected in an increased expression of pluripotency marker (Oct4) and epiblast marker (Fgf5) and decreased expression of lineage specification markers (T, Gata-6, and Cdx2). Knockdown of hypoxia inducible factor-1α in Cited2(Δ/-) ESCs re-initiates the expression of differentiation markers T and Gata-6. Taken together, a deletion of Cited2 in mESCs results in abnormal mitochondrial morphology and impaired glucose metabolism, which correlates with a defective cell fate decision.


Assuntos
Células-Tronco Embrionárias/metabolismo , Glicólise/fisiologia , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Hipóxia Celular/fisiologia , Células-Tronco Embrionárias/citologia , Glucose/genética , Glucose/metabolismo , Hexoquinase/biossíntese , Hexoquinase/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oxirredução , Proteínas Repressoras/genética , Transativadores/genética
2.
J Biol Chem ; 288(41): 29746-59, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23986437

RESUMO

The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.


Assuntos
Metabolismo Energético/genética , Proteínas Nucleares/genética , Obesidade/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Western Blotting , Temperatura Corporal/genética , Antígenos CD36/genética , Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Expressão Gênica , Transportador de Glucose Tipo 4/genética , Fígado/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteínas Nucleares/deficiência , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Proteína da Leucemia Promielocítica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/deficiência , Proteínas Supressoras de Tumor/deficiência
3.
J Biol Chem ; 287(24): 19786-91, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22566694

RESUMO

Serine is generally classified as a nutritionally nonessential (dispensable) amino acid, but metabolically, serine is indispensible and plays an essential role in several cellular processes. Serine is the major source of one-carbon units for methylation reactions that occur via the generation of S-adenosylmethionine. The regulation of serine metabolism in mammalian tissues is thus of critical importance for the control of methyl group transfer. In addition to the well known role of d-serine in the brain, l-serine has recently been implicated in breast cancer and other tumors due in part to the genomic copy number gain for 3-phosphoglycerate dehydrogenase, the enzyme that controls the entry of glycolytic intermediates into the pathway of serine synthesis. Here, we review recent information regarding the synthesis of serine and the regulation of its metabolism and discuss the role played by phosphoenolpyruvate carboxykinase in this process.


Assuntos
Encéfalo/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , S-Adenosilmetionina/metabolismo , Serina/metabolismo , Animais , Humanos , Metilação , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoglicerato Desidrogenase/genética , S-Adenosilmetionina/genética , Serina/genética
4.
J Biol Chem ; 286(46): 40013-24, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21917928

RESUMO

Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through ß-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.


Assuntos
Galinhas/metabolismo , Glicólise/fisiologia , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adipogenia/fisiologia , Animais , Embrião de Galinha , Galinhas/genética , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio/fisiologia , PPAR gama/genética , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica/fisiologia
5.
Metabolism ; 60(3): 404-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20423748

RESUMO

The plasma profile of subjects with nonalcoholic fatty liver disease (NAFLD), steatosis, and steatohepatitis (NASH) was examined using an untargeted global metabolomic analysis to identify specific disease-related patterns and to identify potential noninvasive biomarkers. Plasma samples were obtained after an overnight fast from histologically confirmed nondiabetic subjects with hepatic steatosis (n = 11) or NASH (n = 24) and were compared with healthy, age- and sex-matched controls (n = 25). Subjects with NAFLD were obese, were insulin resistant, and had higher plasma concentrations of homocysteine and total cysteine and lower plasma concentrations of total glutathione. Metabolomic analysis showed markedly higher levels of glycocholate, taurocholate, and glycochenodeoxycholate in subjects with NAFLD. Plasma concentrations of long-chain fatty acids were lower and concentrations of free carnitine, butyrylcarnitine, and methylbutyrylcarnitine were higher in NASH. Several glutamyl dipeptides were higher whereas cysteine-glutathione levels were lower in NASH and steatosis. Other changes included higher branched-chain amino acids, phosphocholine, carbohydrates (glucose, mannose), lactate, pyruvate, and several unknown metabolites. Random forest analysis and recursive partitioning of the metabolomic data could separate healthy subjects from NAFLD with an error rate of approximately 8% and separate NASH from healthy controls with an error rate of 4%. Hepatic steatosis and steatohepatitis could not be separated using the metabolomic profile. Plasma metabolomic analysis revealed marked changes in bile salts and in biochemicals related to glutathione in subjects with NAFLD. Statistical analysis identified a panel of biomarkers that could effectively separate healthy controls from NAFLD and healthy controls from NASH. These biomarkers can potentially be used to follow response to therapeutic interventions.


Assuntos
Metaboloma , Metabolômica/métodos , Adulto , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Fígado Gorduroso/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 286(7): 5266-77, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21147771

RESUMO

We have examined hepatic, genomic, and metabolic responses to dietary protein restriction in the non-pregnant Sprague-Dawley rat. Animals were pair-fed either a 6 or 24% casein-based diet for 7-10 days. At the end of the dietary period, a microarray analysis of the liver was performed, followed by validation of the genes of interest. The rates of appearance of phenylalanine, methionine, serine, and glucose and the contribution of pyruvate to serine and glucose were quantified using tracer methods. Plasma and tissue amino acid levels, enzyme activities, and metabolic intermediates were measured. Protein restriction resulted in significant differential expression of a number of genes involved in cell cycle, cell differentiation, transport, transcription, and metabolic processes. RT-PCR showed that the expression of genes involved in serine biosynthesis and fatty acid oxidation was higher, and those involved in fatty acid synthesis and urea synthesis were lower in the liver of protein-restricted animals. Free serine and glycine levels were higher and taurine levels lower in all tissues examined. Tracer isotope studies showed an ∼50% increase in serine de novo synthesis. Pyruvate was the primary (∼90%) source of serine in both groups. Transmethylation of methionine was significantly higher in the protein-restricted group. This was associated with a higher S-adenosylmethionine/S-adenosylhomocysteine ratio and lower cystathione ß-synthase and cystathionine γ-lyase activity. Dietary isocaloric protein restriction results in profound changes in hepatic one-carbon metabolism within a short period. These may be related to high methylation demands placed on the organism and caused by possible changes in cellular osmolarity as a result of the efflux of the intracellular taurine.


Assuntos
Aminoácidos/metabolismo , Glicemia/metabolismo , Dieta com Restrição de Proteínas , Regulação da Expressão Gênica , Fígado/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Taurina/metabolismo , Transcrição Gênica
7.
J Biol Chem ; 284(40): 27042-53, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19651778

RESUMO

The SIRT1 activators isonicotinamide (IsoNAM), resveratrol, fisetin, and butein repressed transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C). An evolutionarily conserved binding site for hepatic nuclear factor (HNF) 4alpha (-272/-252) was identified, which was required for transcriptional repression of the PEPCK-C gene promoter caused by these compounds. This site contains an overlapping AP-1 binding site and is adjacent to the C/EBP binding element (-248/-234); the latter is necessary for hepatic transcription of PEPCK-C. AP-1 competed with HNF4alpha for binding to this site and also decreased HNF4alpha stimulation of transcription from the PEPCK-C gene promoter. Chromatin immunoprecipitation experiments demonstrated that HNF4alpha and AP-1, but not C/EBPbeta, reciprocally bound to this site prior to and after treating HepG2 cells with IsoNAM. IsoNAM treatment resulted in deacetylation of HNF4alpha, which decreased its binding affinity to the PEPCK-C gene promoter. In HNF4alpha-null Chinese hamster ovary cells, IsoNAM and resveratrol failed to repress transcription from the PEPCK-C gene promoter; overexpression of HNF4alpha in Chinese hamster ovary cells re-established transcriptional inhibition. Exogenous SIRT1 expression repressed transcription, whereas knockdown of SIRT1 by RNA interference reversed this effect. IsoNAM decreased the level of mRNA for PEPCK-C but had no effect on mRNA for glucose-6-phosphatase in AML12 mouse hepatocytes. We conclude that SIRT1 activation inhibited transcription of the gene for PEPCK-C in part by deacetylation of HNF4alpha. However, SIRT1 deacetylation of other key regulatory proteins that control PEPCK-C gene transcription also likely contributed to the inhibitory effect.


Assuntos
Citosol/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Sirtuínas/metabolismo , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Niacinamida/farmacologia , Fosfoenolpiruvato Carboxiquinase (GTP)/química , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas/genética , Resveratrol , Fator de Transcrição AP-1/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 297(3): G567-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19571235

RESUMO

The rates of oxidation of glycine and ureagenesis were quantified in the basal state and in response to an intravenous infusion of intralipid with heparin (IL) in healthy subjects (n = 8) and in subjects with nonalcoholic steatohepatitis (NASH) (n = 6). During fasting, no significant difference in weight-specific rate of appearance (R(a)) of glycine, glycine oxidation, and urea synthesis was observed. Intralipid infusion resulted in a significant increase in plasma beta-hydroxybutyrate in both groups. The correlation between free fatty acids and beta-hydroxybutyrate concentration in plasma was 0.94 in NASH compared with 0.4 in controls, indicating greater hepatic fatty acid oxidation in NASH. Intralipid infusion resulted in a significant decrease in urea synthesis and glycine R(a) in both groups and did not impact glycine oxidation. The fractional contribution of glycine carbon to serine was lower in subjects with NASH before and after IL infusion. In contrast, the fractional contribution of serine carbon to cystathionine was higher in NASH before and following IL infusion. These results suggest that hepatic fatty acid oxidation is higher in NASH compared with controls and that glycine oxidation and urea synthesis are not altered. An increase in oxidative stress, induced by a higher rate of fatty acid oxidation in NASH, may have caused an increase in the contribution of serine to cystathionine to meet the higher demands for glutathione.


Assuntos
Emulsões Gordurosas Intravenosas/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Fígado Gorduroso/metabolismo , Glicina/sangue , Fígado/metabolismo , Ureia/sangue , Ácido 3-Hidroxibutírico/sangue , Adulto , Idoso , Estudos de Casos e Controles , Cistationina/sangue , Jejum/sangue , Emulsões Gordurosas Intravenosas/metabolismo , Feminino , Glutationa/sangue , Humanos , Infusões Intravenosas , Cinética , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Período Pós-Prandial , Serina/sangue , Adulto Jovem
9.
Pediatr Res ; 64(4): 381-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18535487

RESUMO

The rates of transmethylation and transsulfuration of methionine were quantified using [1-(13)C]methionine and [C2H3]methionine tracers in newborn infants born at term gestation and in prematurely born low birth weight infants. Whole body rate of protein breakdown was also measured using [2H5]phenylalanine. The response to enteral formula feeding and parenteral nutrition was examined in full term and prematurely born babies, respectively. The relative rates of appearance of methionine and phenylalanine were comparable to the amino acid composition of mixed body proteins. Rates of transmethylation were high, both in full term infants (fast 32 +/- 14 micromol kg(-1) x h(-1); fed 21.7 +/- 3.2) and in preterm infants (57.2 +/- 14.8). Significant flux through the transsulfuration pathway was evident (full term: fast 6.0 +/- 4.4, fed 4.1 +/- 2.1; preterm: 24.9 +/- 9.9 micromol kg(-1) x h(-1)). Transsulfuration of methionine is evident in the human newborn in the immediate neonatal period, suggesting that cysteine may not be considered a "conditionally" essential amino acid for the neonate. The high rate of transmethylation may reflect the high methylation demand, whereas high rates of transsulfuration in premature babies may be related to high demands for glutathione and to the amounts of methionine in parenteral amino acid mixtures.


Assuntos
Fórmulas Infantis/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Metionina/metabolismo , Aminoácidos/sangue , Isótopos de Carbono , Humanos , Fórmulas Infantis/química , Recém-Nascido , Recém-Nascido Prematuro , Metilação , Ohio , Fenilalanina , Enxofre/metabolismo
10.
Genomics Proteomics Bioinformatics ; 6(3-4): 129-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19329064

RESUMO

A systematic phylogenetic footprinting approach was performed to identify conserved transcription factor binding sites (TFBSs) in mammalian promoter regions using human, mouse and rat sequence alignments. We found that the score distributions of most binding site models did not follow the Gaussian distribution required by many statistical methods. Therefore, we performed an empirical test to establish the optimal threshold for each model. We gauged our computational predictions by comparing with previously known TFBSs in the PCK1 gene promoter of the cytosolic isoform of phosphoenolpyruvate carboxykinase, and achieved a sensitivity of 75% and a specificity of approximately 32%. Almost all known sites overlapped with predicted sites, and several new putative TFBSs were also identified. We validated a predicted SP1 binding site in the control of PCK1 transcription using gel shift and reporter assays. Finally, we applied our computational approach to the prediction of putative TFBSs within the promoter regions of all available RefSeq genes. Our full set of TFBS predictions is freely available at http://bfgl.anri.barc.usda.gov/tfbsConsSites.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Algoritmos , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Sequência Conservada , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Distribuição Normal , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
11.
J Biol Chem ; 280(46): 38689-99, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16166091

RESUMO

Although CCAAT/enhancer-binding protein alpha (C/EBPalpha) is essential for initiating or sustaining several metabolic processes during the perinatal period, the consequences of total ablation of C/EBPalpha during postnatal development have not been investigated. We have created a conditional knock-out model in which the administration of poly(I:C) caused a virtually total deletion of c/ebpalpha (C/EBPalpha(Delta/-) mice) in the liver, spleen, white and brown adipose tissues, pancreas, lung, and kidney of the mice. C/EBPalpha itself was completely ablated in the liver by day 4 after the injection of poly(I:C). There was no noticeable change in phenotype during the first 15 days after the injection. The mice maintained a normal level of fasting blood glucose and responded to the diabetogenic action of streptozotocin. From day 16 onward, the mice developed hypophagia, exhibited severe weight loss, lost triglyceride in white but not brown adipose tissue, became hypoglycemic and hypoinsulinemic, depleted their hepatic glycogen, and developed fatty liver. They also exhibited lowered plasma levels of free fatty acid, triglyceride, and cholesterol, as well as marked changes in hepatic mRNA for C/EBPdelta, peroxisome proliferator-activated receptor alpha, sterol regulatory element-binding protein 1, hydroxymethylglutaryl-coenzyme A reductase, and apolipoproteins. Although basal levels of hepatic mRNA for the cytosolic isoform of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were reduced, transcription of the genes for these enzymes was inducible by dibutyryl cyclic AMP in C/EBPalpha(Delta/-) mice. The animals died about 1 month after the injection of poly(I:C). These findings demonstrate that C/EBPalpha is essential for the survival of animals during postnatal life and that its ablation leads to distinct biphasic change in metabolic processes.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Tecido Adiposo/metabolismo , Alelos , Animais , Apolipoproteínas/química , Glicemia/metabolismo , Northern Blotting , Southern Blotting , Western Blotting , Peso Corporal , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Colesterol/metabolismo , Cruzamentos Genéticos , AMP Cíclico/metabolismo , Citosol/química , Fígado Gorduroso/metabolismo , Deleção de Genes , Genótipo , Glucoquinase/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Cinética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , PPAR alfa/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Poli C , Poli I , Reação em Cadeia da Polimerase , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Estreptozocina/farmacologia , Fatores de Tempo , Distribuição Tecidual , Transcrição Gênica , Triglicerídeos/metabolismo
12.
J Biol Chem ; 280(40): 33873-84, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16100117

RESUMO

The hepatic transcriptional regulation by glucocorticoids of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C) gene is coordinated by interactions of specific transcription factors at the glucocorticoid regulatory unit (GRU). We propose an extended GRU that consists of four accessory sites, two proximal AF1 and AF2 sites and their distal counterpart dAF1 (-993) and a new site, dAF2 (-1365); together, these four sites form a palindrome. Sequencing and gel shift binding assays of hepatic nuclear proteins interacting with these sites indicated similarity of dAF1 and dAF2 sites to the GRU proximal AF1 and AF2 sites. Chromatin immunoprecipitation assays demonstrated that glucocorticoids enhanced the binding of FOXO1 and peroxisome proliferator-activated receptor-alpha to AF2 and dAF2 sites and not to dAF1 site but enhanced the binding of hepatic nuclear transcription factor-4alpha only to the dAF1 site. Insulin inhibited the binding of these factors to their respective sites but intensified the binding of phosphorylated FOXO1. Transient transfections in HepG2 human hepatoma cells showed that glucocorticoid receptor interacts with several non-steroid nuclear receptors, yielding a synergistic response of the PEPCK-C gene promoter to glucocorticoids. The synergistic stimulation by glucocorticoid receptor together with peroxisome proliferator-activated receptor-alpha or hepatic nuclear transcription factor-4alpha requires all four accessory sites, i.e. a mutation of each of these markedly affects the synergistic response. Mice with a targeted mutation of the dAF1 site confirmed this requirement. This mutation inhibited the full response of hepatic PEPCK-C gene to diabetes by reducing PEPCK-C mRNA level by 3.5-fold and the level of circulating glucose by 25%.


Assuntos
Regulação da Expressão Gênica , Glucocorticoides/farmacologia , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Receptores de Glucocorticoides/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Cromatina/química , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Hipoglicemiantes/farmacologia , Imunoprecipitação , Insulina/farmacologia , Fígado/enzimologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , PPAR alfa , Regiões Promotoras Genéticas , Transcrição Gênica , Transfecção , Células Tumorais Cultivadas
13.
J Biol Chem ; 279(15): 15385-95, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-14744869

RESUMO

The sterol regulatory element-binding protein-1c (SREBP-1c), as well as SREBP-1a and SREBP-2, inhibit transcription of the gene encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C). There are two SREBP regulatory elements (SREs) in the PEPCK-C gene promoter (-322 to -313 and -590 to -581). The SRE at -590 overlaps an Sp1 site on the opposite strand of the DNA. These SREs bound SREBP-1a and SREBP-1c with low affinity but the addition of purified upstream stimulatory activity enhanced the binding of SREBP-1 to both of these sites. Mutating these SREs increased both unstimulated (5-fold) and protein kinase A-stimulated transcription (8-27-fold) from the PEPCK-C gene promoter; this was lost when both SREs were mutated. The SRE at -590 differs by a single base pair from the SRE in the low density lipoprotein (LDL) receptor gene (T in the PEPCK-C gene promoter at -582, compared with an A in the SRE of the gene for the LDL receptor promoter). Introduction of the LDL receptor SRE into the PEPCK-C gene promoter increased SREBP-1c binding and caused a 10-fold enhancement of basal transcription from the promoter, rather than an inhibition as observed with the SRE in the PEPCK-C gene promoter. The T/A change does not alter the binding of Sp1 to its site on the opposite strand of the DNA. Sp1 bound to the promoter independently of SREBP-1c but competed with SREBP-1c for binding. Sp1 does not bind to the SRE at -322. Chromatin immunoprecipitation analysis, using rat hepatocytes, demonstrated that SREBP-1 and Sp1 were associated in vivo with putative regulatory regions corresponding to the SREs in the PEPCK-C gene promoter. We propose that insulin represses transcription of the gene for PEPCK-C by inducing SREBP-1c production in the liver, which interferes with the stimulatory effect of Sp1 at -590 of the PEPCK-C gene promoter.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fígado/enzimologia , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas/fisiologia , Fator de Transcrição Sp1/fisiologia , Transcrição Gênica , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Cromatina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Genes Dominantes , Genes Reporter , Vetores Genéticos , Glutationa Peroxidase , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Modelos Genéticos , Mutagênese Sítio-Dirigida , Mutação , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas , Proteínas/genética , Ratos , Proteínas Recombinantes/química , Fator de Transcrição Sp1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Proteína de Ligação a Elemento Regulador de Esterol 2 , Fatores de Transcrição/metabolismo , Transfecção
14.
J Biol Chem ; 278(35): 32578-86, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12807905

RESUMO

Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore.


Assuntos
DNA/metabolismo , Técnicas de Transferência de Genes , Mitose , Transporte Ativo do Núcleo Celular , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Terapia Genética/métodos , Proteínas de Fluorescência Verde , Humanos , Membranas Intracelulares/metabolismo , Cinética , Luz , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Lisina/química , Microscopia Eletrônica , Nanotecnologia/métodos , Neuroblastoma/metabolismo , Poro Nuclear/metabolismo , Peptídeos/química , Fosfatidiletanolaminas/metabolismo , Plasmídeos/metabolismo , Espalhamento de Radiação , Fatores de Tempo , Transfecção , Transgenes , Células Tumorais Cultivadas
15.
Pediatr Res ; 53(2): 325-32, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12538794

RESUMO

Perturbations in glucose metabolism in the fetus and in the neonate are a consistent finding in several different animal models of intrauterine growth retardation (IUGR) as well as in humans. Studies in rats who have undergone IUGR have shown decreased hepatic glycogen stores in the fetus and delayed induction of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) at birth. Hepatic transcription factors CCAAT enhancer binding protein (C/EBP)alpha and C/EBPbeta and the increase in cyclic AMP at birth have been implicated in the initial appearance of PEPCK-C. We have examined the effect of IUGR induced by reduced maternal inspired oxygen (fractional inspired oxygen concentration 0.14) on a) the expression of genes for hepatic C/EBPalpha, C/EBPbeta, PEPCK-C and glycogen synthase; and b) transcription of the genes for C/EBPbeta and PEPCK-C by dibutyryl cyclic AMP in the fetus. Three days (d 18-21) of decrease in maternal inspired oxygen resulted in lower maternal arterial PO(2) and a lower birth weight of the pups (p < 0.01). Fetuses that underwent IUGR had significantly lower concentrations of plasma glucose, hepatic glycogen, and glycogen synthase mRNA and a higher hepatic lactate:pyruvate ratio. They also had lower levels of hepatic PEPCK-C mRNA at birth. The concentration of hepatic mRNA for C/EBPalpha and C/EBPbeta as well as the transcription factors themselves were not affected by the decreased maternal inspired oxygen. Fetal injection of dibutyryl cyclic AMP after 24 h of decreased maternal inspired oxygen (d 18-19) had no effect on the expression of C/EBPbeta. However, it resulted in an attenuated induction of PEPCK-C in the fetuses with IUGR. We speculate that a decrease in maternal inspired oxygen induced certain mediators, either in the mother or in the placenta, that caused lower fetal glucose concentration and affected the transcription of genes involved in fetal hepatic glucose metabolism. IUGR, as a result of decreased fractional inspired oxygen concentration may also be the consequence of pH-mediated changes in uterine blood flow. However, these remain to be examined in this experimental model.


Assuntos
Feto/metabolismo , Glicogênio Hepático/metabolismo , Troca Materno-Fetal/fisiologia , Oxigênio/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Bucladesina/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Dióxido de Carbono/sangue , Feminino , Glicogênio Sintase/metabolismo , Fígado/química , Fígado/enzimologia , Fenômenos Fisiológicos da Nutrição Materna , NF-kappa B/metabolismo , Oxirredução , Oxigênio/sangue , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA