Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232287

RESUMO

During the last half-century, numerous antiinflammatory agents were tested in dozens of clinical trials and have proven ineffective for treating septic shock. The observation in multiple studies that cell-free hemoglobin (CFH) levels are elevated during clinical sepsis and that the degree of increase correlates with higher mortality suggests an alternative approach. Human haptoglobin binds CFH with high affinity and, therefore, can potentially reduce iron availability and oxidative activity. CFH levels are elevated over approximately 24-48 hours in our antibiotic-treated canine model of S. aureus pneumonia that simulates the cardiovascular abnormalities of human septic shock. In this 96-hour model, resuscitative treatments, mechanical ventilation, sedation, and continuous care are translatable to management in human intensive care units. We found, in this S. aureus pneumonia model inducing septic shock, that commercial human haptoglobin concentrate infusions over 48-hours bind canine CFH, increase CFH clearance, and lower circulating iron. Over the 96-hour study, this treatment was associated with an improved metabolic profile (pH, lactate), less lung injury, reversal of shock, and increased survival. Haptoglobin binding compartmentalized CFH to the intravascular space. This observation, in combination with increasing CFHs clearance, reduced available iron as a potential source of bacterial nutrition while decreasing the ability for CFH and iron to cause extravascular oxidative tissue injury. In contrast, haptoglobin therapy had no measurable antiinflammatory effect on elevations in proinflammatory C-reactive protein and cytokine levels. Haptoglobin therapy enhances normal host defense mechanisms in contrast to previously studied antiinflammatory sepsis therapies, making it a biologically plausible novel approach to treat septic shock.


Assuntos
Haptoglobinas/farmacologia , Lesão Pulmonar/tratamento farmacológico , Pneumonia/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Gasometria , Anormalidades Cardiovasculares , Citocinas , Modelos Animais de Doenças , Cães , Haptoglobinas/uso terapêutico , Hematócrito , Humanos , Imunidade Inata , Ferro , Estimativa de Kaplan-Meier , Pneumonia/microbiologia , Pneumonia/mortalidade , Artéria Pulmonar , Staphylococcus aureus
2.
Mol Pharmacol ; 91(2): 75-86, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27895162

RESUMO

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminal-associated protein that alters CB1R interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CB1R interactions with ß-arrestin proteins that interact with the CB1R at the C-terminus. Coimmunoprecipitation studies indicated that CB1R associates in complexes with either CRIP1a or ß-arrestin, but CRIP1a and ß-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and ß-arrestin binding to the CB1R, which we hypothesized could attenuate the action of ß-arrestin to mediate CB1R internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CB1Rs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CB1R. CRIP1a overexpression attenuated CP55940-mediated GFP-CB1R as well as endogenous ß-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented ß-arrestin redistribution to punctae. Peptides mimicking the CB1R C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CB1R distal C-terminus 14-mer peptide reduced CB1R-CRIP1a association. Coimmunoprecipitation of CB1R protein complexes demonstrated that central or distal C-terminal peptides competed for the CB1R association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with ß-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with ß-arrestin 2. Thus, CRIP1a can compete with ß-arrestins for interaction with C-terminal CB1R domains that could affect agonist-driven, ß-arrestin-mediated internalization of the CB1R.


Assuntos
Proteínas de Transporte/metabolismo , Receptor CB1 de Canabinoide/metabolismo , beta-Arrestinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana , Peptídeos/química , Fosforilação , Ligação Proteica , Ratos
3.
Atherosclerosis ; 238(2): 231-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25528432

RESUMO

Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ésteres do Colesterol/sangue , LDL-Colesterol/sangue , Dieta Mediterrânea , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácido Oleico/administração & dosagem , Proteoglicanas/sangue , Adulto , Canadá , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Óleo de Milho/administração & dosagem , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Ácido Linoleico/administração & dosagem , Masculino , Pessoa de Meia-Idade , Óleo de Brassica napus , Fatores de Risco , Comportamento de Redução do Risco , Óleo de Cártamo/administração & dosagem , Fatores de Tempo , Estados Unidos
4.
Neuro Oncol ; 14(10): 1239-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22952195

RESUMO

Our objective was to exploit a novel ligand-based delivery system for targeting diagnostic and therapeutic agents to cancers that express interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-restricted plasma membrane receptor overexpressed in glioblastoma multiforme (GBM), meningiomas, peripheral nerve sheath tumors, and other peripheral tumors. On the basis of our prior work, we designed a novel IL13Rα2-targeted quadruple mutant of IL13 (TQM13) to selectively bind the tumor-restricted IL13Rα2 with high affinity but not significantly interact with the physiologically abundant IL13Rα1/IL4Rα heterodimer that is also expressed in normal brain. We then assessed the in vitro binding profile of TQM13 and its potential to deliver diagnostic and therapeutic radioactivity in vivo. Surface plasmon resonance (SPR; Biacore) binding experiments demonstrated that TQM13 bound strongly to recombinant IL13Rα2 (Kd∼5 nM). In addition, radiolabeled TQM13 specifically bound IL13Rα2-expressing GBM cells and specimens but not normal brain. Of importance, TQM13 did not functionally activate IL13Rα1/IL4Rα in cells or bind to it in SPR binding assays, in contrast to wtIL13. Furthermore, in vivo targeting of systemically delivered radiolabeled TQM13 to IL13Rα2-expressing subcutaneous tumors was demonstrated and confirmed non-invasively for the first time with 124I-TQM13 positron emission tomography imaging. In addition, 131I-TQM13 demonstrated in vivo efficacy against subcutaneous IL13Rα2-expressing GBM tumors and in an orthotopic synergeic IL13Rα2-positive murine glioma model, as evidenced by statistically significant survival advantage. Our results demonstrate that we have successfully generated an optimized biomarker-targeted scaffolding that exhibited specific binding activity toward the tumor-associated IL13Rα2 in vitro and potential to deliver diagnostic and therapeutic payloads in vivo.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Interleucina-13/genética , Animais , Sítios de Ligação , Western Blotting , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Glioblastoma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Interleucina-13/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Nus , Mutagênese Sítio-Dirigida , Mutação/genética , Tomografia por Emissão de Pósitrons , Ligação Proteica , Proteínas Recombinantes , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nucleic Acids Res ; 39(16): 7161-78, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21586581

RESUMO

It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent K(d)'s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these K(d)'s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/química , Quadruplex G , Dicroísmo Circular , DNA/metabolismo , Genes myc , Humanos , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Ácidos Nucleicos Peptídicos/química , Recombinases/metabolismo
6.
Biochemistry ; 49(43): 9217-25, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20828133

RESUMO

This study demonstrates that two orthogonal events regulate integrin αIIbß3's interactions with fibrinogen, its primary physiological ligand: (1) conformational changes at the αIIb-ß3 interface and (2) flexibility in the carboxy terminus of fibrinogen's γ-module. The first postulate was tested by capturing αIIbß3 on a biosensor and measuring binding by surface plasmon resonance. Binding of fibrinogen to eptifibatide-primed αIIbß3 was characterized by a k(on) of ~2 × 10(4) L mol(-1) s(-1) and a k(off) of ~8 × 10(-5) s(-1) at 37 °C. In contrast, even at 150 nM fibrinogen, no binding was detected with resting αIIbß3. Eptifibatide competitively inhibited fibrinogen's interactions with primed αIIbß3 (K(i) ~0.4 nM), while a synthetic γ-module peptide (HHLGGAKQAGDV) was only weakly inhibitory (K(i) > 10 µM). The second postulate was tested by measuring αIIbß3's interactions with recombinant fibrinogen, both normal (rFgn) and a deletion mutant lacking the γ-chain AGDV sites (rFgn γΔ408-411). Normal rFgn bound rapidly, tightly, and specifically to primed αIIbß3; no interaction was detected with rFgn γΔ408-411. Equilibrium and transition-state thermodynamic data indicated that binding of fibrinogen to primed αIIbß3, while enthalpy-favorable, must overcome an entropy-dominated activation energy barrier. The hypothesis that fibrinogen binding is enthalpy-driven fits with structural data showing that its γ-C peptide and eptifibatide exhibit comparable electrostatic contacts with αIIbß3's ectodomain. The concept that fibrinogen's αIIbß3 targeting sequence is intrinsically disordered may explain the entropy penalty that limits its binding rate. In the hemostatic milieu, platelet-platelet interactions may be localized to vascular injury sites because integrins must be activated before they can bind their most abundant ligand.


Assuntos
Fibrinogênio/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Entropia , Eptifibatida , Fibrinogênio/metabolismo , Hemostáticos , Humanos , Peptídeos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Termodinâmica
7.
Biochemistry ; 48(35): 8355-65, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19640007

RESUMO

This investigation addressed the paradox that disintegrins and small RGD-ligands readily bind to the resting alphaIIbbeta3 integrin, while macromolecules with similar integrin recognition motifs require an activated, or primed, receptor. Three structurally similar pharmaceutical integrin antagonists (eptifibatide, tirofiban, and roxifiban) were each incubated with resting alphaIIbbeta3; after drug wash-out, the receptor's ability to recognize PAC-1, an activation-dependent IgM with an RYD integrin-targeting site was measured. Their promotion of PAC-1:alphaIIbbeta3 binding (solid phase assay), eptifibatide > tirofiban > roxifiban, correlated with their ability to shift the receptor to an open conformer, as measured by analytical ultracentrifugation. Surface plasmon resonance (SPR) demonstrated that PAC-1 bound rapidly (k(on) approximately 5 x 10(5) l/mol-s, 25 degrees C) and tightly (Kd approximately 1 nM) to eptifibatide-primed integrins, captured on a biosensor using an IgG specific for alphaIIb's cytoplasmic domain. Varying the interval between integrin capture and antagonist dissociation indicated that transiently primed alphaIIbbeta3 retains the ability to rapidly bind PAC-1 from 2-90 min, although the dissociation rate increased at later times, indicative of a weakening of the complex. Fluorescence anisotropy (fluorophore-tagged analogue exchange assay) demonstrated that eptifibatide dissociates rapidly from alphaIIbbeta3 (half-time <2 min), consistent with the priming window determined by SPR. van't Hoff analysis of alphaIIbbeta3:PAC-1's temperature-dependent Kd indicated entropy/enthalpy compensation, similar to (resting) integrin binding to the disintegrin echistatin. Eyring analysis of k(on) yielded DeltaG degrees approximately 10 kcal/mol for PAC-1 binding to primed alphaIIbbeta3, 3 kcal/mol lower than that of echistatin. These observations suggest that priming lowers the transition-state energy barrier, enabling rapid macromolecular ligand binding to activated integrins. Recognizing the limitations in extrapolating from laboratory to pathophysiological conditions, we propose that similar priming mechanisms may contribute to the unexpected platelet-activating effects of pharmaceutical integrin antagonists.


Assuntos
Fosfatase 2 de Especificidade Dupla/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Amidinas/química , Amidinas/farmacologia , Eptifibatida , Integrinas/química , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Isoxazóis/química , Isoxazóis/farmacologia , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Ligação Proteica , Termodinâmica , Tirofibana , Tirosina/análogos & derivados , Tirosina/química , Tirosina/farmacologia
8.
Structure ; 16(6): 954-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18547527

RESUMO

Integrin-dependent adhesion and signaling are regulated by conformational changes whose details remain controversial. Crystallography revealed bent shapes for resting and primed integrin ectodomains, whereas large, ligand-induced rearrangements in other constructs suggested extension, "opening," and tail separation. We have used experimental/computed hydrodynamics to discriminate among different alpha(v)beta(3) and alpha(IIb)beta(3) atomic models built on X-ray, NMR, and EM data. In contrast with X-ray structures and EM maps, hydrodynamics indicate that resting integrins are already extended. Furthermore, the hydrodynamics of an alpha(v)beta(3) ectodomain-fibronectin fragment complex support opening via additional head region conformational changes (hybrid domain swing-out), but without tail separation. Likewise, frictional changes induced by priming agents in full-length alpha(IIb)beta(3) correlate well with the swing-out coupled to a simple transmembrane helix shift in an extended, electron tomography-based model. Extension and immediate tail separation are then uncoupled from head region rearrangements following activation, thus underscoring integrins' delicate, finely tuned plasticity.


Assuntos
Integrina alfaVbeta3/química , Modelos Moleculares , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Cristalografia por Raios X , Fibronectinas/química , Integrina alfaVbeta3/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Água/química
9.
Biochemistry ; 47(9): 2884-92, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18237139

RESUMO

This investigation examined the molecular mechanisms that enable the alphaIIbbeta3 integrin to bind efficiently, tightly, and selectively to echistatin, an RGD disintegrin. We used surface plasmon resonance spectroscopy to measure the rate, extent, and stability of complexes formed between micellar alphaIIbbeta3 and recombinant echistatin (rEch) mutants, immobilized on the surface of a biosensor chip. alphaIIbbeta3 bound readily and tightly to wild-type RGD-rEch and RGDF-rEch but not to RGA-rEch or AGD-rEch, demonstrating that both of those charged moieties contribute to integrin recognition. van't Hoff analysis of the temperature dependence of the RGD-rEch K d data yielded an unfavorable enthalpy change, Delta H degrees = 14 +/- 3 kcal/mol, offset by a favorable entropy term, TDelta S degrees = 23 +/- 3 kcal/mol. Eyring analysis of the temperature dependence of the kinetic parameters yielded Delta H a degrees (++) = 9 +/- 2 kcal/mol and TDelta S a degrees (++) = -4 +/- 2 kcal/mol, indicating that a substantial activation enthalpy barrier and a smaller activation entropy hinder assembly of the encounter complex. Thus, equilibrium thermodynamic data demonstrate that entropy is the dominant factor stabilizing integrin:echistatin binding, while transition-state thermodynamic parameters indicate that the rate of complex formation is enthalpy-limited. When electrostatic contacts are the major source of receptor:ligand stability, theory and experiment indicate that entropy-favorable ion-pair desolvation often provides the driving force for molecular recognition.


Assuntos
Entropia , Peptídeos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Peptídeos/química , Peptídeos/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura , Termodinâmica
10.
J Nanobiotechnology ; 4: 14, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17169152

RESUMO

We have developed a new method of application of C60 to cultured cells that does not require water-solubilization techniques. Normal and malignant cells take-up C60 and the inherent photoluminescence of C60 is detected within multiple cell lines. Treatment of cells with up to 200 microg/ml (200 ppm) of C60 does not alter morphology, cytoskeletal organization, cell cycle dynamics nor does it inhibit cell proliferation. Our work shows that pristine C60 is non-toxic to the cells, and suggests that fullerene-based nanocarriers may be used for biomedical applications.

11.
Protein Sci ; 15(8): 1893-906, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16877710

RESUMO

This study tested the hypothesis that high-affinity binding of macromolecular ligands to the alphaIIbbeta3 integrin is tightly coupled to binding-site remodeling, an induced-fit process that shifts a conformational equilibrium from a resting toward an open receptor. Interactions between alphaIIbbeta3 and two model ligands-echistatin, a 6-kDa recombinant protein with an RGD integrin-targeting sequence, and fibrinogen's gamma-module, a 30-kDa recombinant protein with a KQAGDV integrin binding site-were measured by sedimentation velocity, fluorescence anisotropy, and a solid-phase binding assay, and modeled by molecular graphics. Studying echistatin variants (R24A, R24K, D26A, D26E, D27W, D27F), we found that electrostatic contacts with charged residues at the alphaIIb/beta3 interface, rather than nonpolar contacts, perturb the conformation of the resting integrin. Aspartate 26, which interacts with the nearby MIDAS cation, was essential for binding, as D26A and D26E were inactive. In contrast, R24K was fully and R24A partly active, indicating that the positively charged arginine 24 contributes to, but is not required for, integrin recognition. Moreover, we demonstrated that priming--i.e., ectodomain conformational changes and oligomerization induced by incubation at 35 degrees C with the ligand-mimetic peptide cHarGD--promotes complex formation with fibrinogen's gamma-module. We also observed that the gamma-module's flexible carboxy terminus was not required for alphaIIbbeta3 integrin binding. Our studies differentiate priming ligands, which bind to the resting receptor and perturb its conformation, from regulated ligands, where binding-site remodeling must first occur. Echistatin's binding energy is sufficient to rearrange the subunit interface, but regulated ligands like fibrinogen must rely on priming to overcome conformational barriers.


Assuntos
Fibrinogênio/metabolismo , Peptídeos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Sítios de Ligação , Biotinilação , Polarização de Fluorescência , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ultracentrifugação
12.
Biochim Biophys Acta ; 1736(3): 228-36, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16154383

RESUMO

MDA-MB-231, MCF7, and SKOV3 cancer cells, but not HEK-293 cells, expressed mRNA for the leukocyte G protein-coupled 5-oxo-eicosatetraenoate (ETE) OXE receptor. 5-Oxo-ETE, 5-oxo-15-OH-ETE, and 5-HETE stimulated the cancer cell lines but not HEK-293 cells to mount pertussis toxin-sensitive proliferation responses. Their potencies in eliciting this response were similar to their known potencies in activating leukocytes and OXE receptor-transfected cells. However, high concentrations of 5-oxo-ETE and 5-oxo-15-OH-ETE, but not 5-HETE, arrested growth and caused apoptosis in all four cell lines; these responses were pertussis toxin-resistant. The same high concentrations of the oxo-ETEs but again not 5-HETE also activated peroxisome proliferator-activated receptor (PPAR)-gamma. Pharmacological studies indicated that this activation did not mediate their effects on proliferation. These results are the first to implicate the OXE receptor in malignant cell growth and to show that 5-oxo-ETEs activate cell death programs as well as PPARgamma independently of this receptor.


Assuntos
Ácidos Araquidônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptores Eicosanoides/fisiologia , Anilidas/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Sítios de Ligação/genética , Caspase 3 , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Mitose/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Toxina Pertussis/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia , Ligação Proteica , Receptores Eicosanoides/genética , Transfecção
13.
J Mol Biol ; 342(5): 1625-36, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15364586

RESUMO

We have employed echistatin, a 5.4 kDa snake venom disintegrin, as a model protein to investigate the paradox that small ligand-mimetics can bind to the resting alphaIIbbeta3 integrin while adhesive macromolecules cannot. We characterized the interactions between purified human alphaIIbbeta3 and two recombinant echistatin variants: rEch (1-49) M28L, chosen for its selectivity toward beta3-integrins, and rEch (1-40) M28L, a carboxy-terminal truncation mutant. While both contain an RGD integrin targeting sequence, only rEch (1-49) M28L was an effective inhibitor of alphaIIbbeta3 function. Electron microscopy of rotary shadowed specimens yielded a variety of alphaIIbbeta3 conformers ranging from compact, spherical particles (maximum dimension 22 nm) to the classical "head with two tails" forms (32 nm). The population of larger particles (42-56 nm) increased from 17% to 28% in the presence of rEch (1-49) M28L, indicative of ligand-induced oligomerization. Sedimentation velocity measurements demonstrated that both full length and truncated echistatin perturbed alphaIIbbeta3's solution structure, yielding slower-sedimenting open conformers. Dynamic light scattering showed that rEch (1-49) M28L protected alphaIIbbeta3 from thermal aggregation, raising its transition mid-point from 46 degrees C to 69 degrees C; a smaller shift resulted with rEch (1-40) M28L. Sedimentation equilibrium demonstrated that both echistatin ligands induced substantial alphaIIbbeta3 dimerization. van't Hoff analysis revealed a pattern of entropy/enthalpy compensation similar to tirofiban, a small RGD ligand-mimetic that binds tightly to alphaIIbbeta3, but yields smaller conformational perturbations than echistatin. We propose that echistatin may serve as a paradigm for understanding multidomain adhesive macromolecules because its ability to modulate alphaIIbbeta3's structure resides on an RGD loop, while full disintegrin activity requires an auxiliary site that includes the carboxy-terminal nine amino acid residues.


Assuntos
Oligopeptídeos/farmacologia , Peptídeos/metabolismo , Inibidores da Agregação Plaquetária/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Animais , Plaquetas/metabolismo , Dimerização , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Microscopia Eletrônica , Modelos Moleculares , Mutação , Oligopeptídeos/química , Peptídeos/química , Peptídeos/genética , Agregação Plaquetária , Inibidores da Agregação Plaquetária/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteínas Recombinantes/química , Venenos de Víboras/química
14.
J Bacteriol ; 184(11): 2931-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12003933

RESUMO

The dpr gene is an antioxidant gene which was isolated from the Streptococcus mutans chromosome by its ability to complement an alkyl hydroperoxide reductase-deficient mutant of Escherichia coli, and it was proven to play an indispensable role in oxygen tolerance in S. mutans. Here, we purified the 20-kDa dpr gene product, Dpr, from a crude extract of S. mutans as an iron-binding protein and found that Dpr formed a spherical oligomer about 9 nm in diameter. Molecular weight determinations of Dpr in solution by analytical ultracentrifugation and light-scattering analyses gave values of 223,000 to 292,000, consistent with a subunit composition of 11.5 to 15 subunits per molecule. The purified Dpr contained iron and zinc atoms and had an ability to incorporate up to 480 iron and 11.2 zinc atoms per molecule. Unlike E. coli Dps and two other members of the Dps family, Dpr was unable to bind DNA. One hundred nanomolar Dpr prevented by more than 90% the formation of hydroxyl radical generated by 10 microM iron(II) salt in vitro. The data shown in this study indicate that Dpr may act as a ferritin-like iron-binding protein in S. mutans and may allow this catalase- and heme-peroxidase-deficient bacterium to grow under air by limiting the iron-catalyzed Fenton reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Radical Hidroxila/metabolismo , Ferro/metabolismo , Streptococcus mutans/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao Ferro , Peso Molecular , Oxigênio/metabolismo , Proteínas de Ligação a Transferrina , Zinco
15.
Biochemistry ; 41(17): 5493-504, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11969410

RESUMO

2-Cys peroxiredoxins (Prxs) are a large and diverse family of peroxidases which, in addition to their antioxidant functions, regulate cell signaling pathways, apoptosis, and differentiation. These enzymes are obligate homodimers (alpha(2)), utilizing a unique intermolecular redox-active disulfide center for the reduction of peroxides, and are known to form two oligomeric states: individual alpha(2) dimers or doughnut-shaped (alpha(2))(5) decamers. Here we characterize both the oligomerization properties and crystal structure of a bacterial 2-Cys Prx, Salmonella typhimurium AhpC. Analytical ultracentrifugation and dynamic light scattering show that AhpC's oligomeric state is redox linked, with oxidization favoring the dimeric state. The 2.5 A resolution crystal structure (R = 18.5%, R(free) = 23.9%) of oxidized, decameric AhpC reveals a metastable oligomerization intermediate, allowing us to identify a loop that adopts distinct conformations associated with decameric and dimeric states, with disulfide bond formation favoring the latter. This molecular switch contains the peroxidatic cysteine and acts to buttress the oligomerization interface in the reduced, decameric enzyme. A structurally detailed catalytic cycle incorporating these ideas and linking activity to oligomeric state is presented. Finally, on the basis of sequence comparisons, we suggest that the enzymatic and signaling activities of all 2-Cys Prxs are regulated by a redox-sensitive dimer to decamer transition.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Sequência de Aminoácidos , Catálise , Simulação por Computador , Cristalização , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Peroxirredoxinas , Estrutura Secundária de Proteína , Salmonella typhimurium/enzimologia , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA