Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112212, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36870059

RESUMO

Human lung cancer is a constellation of tumors with various histological and molecular properties. To build a preclinical platform that covers this broad disease spectrum, we obtained lung cancer specimens from multiple sources, including sputum and circulating tumor cells, and generated a living biobank consisting of 43 lines of patient-derived lung cancer organoids. The organoids recapitulated the histological and molecular hallmarks of the original tumors. Phenotypic screening of niche factor dependency revealed that EGFR mutations in lung adenocarcinoma are associated with the independence from Wnt ligands. Gene engineering of alveolar organoids reveals that constitutive activation of EGFR-RAS signaling provides Wnt independence. Loss of the alveolar identity gene NKX2-1 confers Wnt dependency, regardless of EGFR signal mutation. Sensitivity to Wnt-targeting therapy can be stratified by the expression status of NKX2-1. Our results highlight the potential of phenotype-driven organoid screening and engineering for the fabrication of therapeutic strategies to combat cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/metabolismo , Bancos de Espécimes Biológicos , Receptores ErbB/metabolismo , Genótipo , Neoplasias Pulmonares/patologia , Organoides/metabolismo , Fenótipo
2.
Nature ; 608(7924): 784-794, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798028

RESUMO

Cancer relapse after chemotherapy remains a main cause of cancer-related death. Although the relapse is thought to result from the propagation of resident cancer stem cells1, a lack of experimental platforms that enable the prospective analysis of cancer stem cell dynamics with sufficient spatiotemporal resolution has hindered the testing of this hypothesis. Here we develop a live genetic lineage-tracing system that allows the longitudinal tracking of individual cells in xenotransplanted human colorectal cancer organoids, and identify LGR5+ cancer stem cells that exhibit a dormant behaviour in a chemo-naive state. Dormant LGR5+ cells are marked by the expression of p27, and intravital imaging provides direct evidence of the persistence of LGR5+p27+ cells during chemotherapy, followed by clonal expansion. Transcriptome analysis reveals that COL17A1-a cell-adhesion molecule that strengthens hemidesmosomes-is upregulated in dormant LGR5+p27+ cells. Organoids in which COL17A1 is knocked out lose the dormant LGR5+p27+ subpopulation and become sensitive to chemotherapy, which suggests that the cell-matrix interface has a role in the maintenance of dormancy. Chemotherapy disrupts COL17A1 and breaks the dormancy in LGR5+p27+ cells through FAK-YAP activation. Abrogation of YAP signalling prevents chemoresistant cells from exiting dormancy and delays the regrowth of tumours, highlighting the therapeutic potential of YAP inhibition in preventing cancer relapse. These results offer a viable therapeutic approach to overcome the refractoriness of human colorectal cancer to conventional chemotherapy.


Assuntos
Neoplasias do Colo , Células-Tronco Neoplásicas , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Proliferação de Células , Rastreamento de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Quinase 1 de Adesão Focal/metabolismo , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Colágenos não Fibrilares/metabolismo , Organoides/metabolismo , Organoides/patologia , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Colágeno Tipo XVII
3.
Cytotechnology ; 73(4): 669-682, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34349355

RESUMO

Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1ß, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-021-00487-y.

4.
Toxins (Basel) ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987679

RESUMO

The different effects of deoxynivalenol (DON) on intestinal barrier and stem cells by its route of exposure remain less known. We explored the toxic effects of DON on intestinal barrier functions and stem cells after DON microinjection (luminal exposure) or addition to a culture medium (basolateral exposure) using three-dimensional mouse intestinal organoids (enteroids). The influx test using fluorescein-labeled dextran showed that basolateral DON exposure (1 micromolar (µM) disrupted intestinal barrier functions in enteroids compared with luminal DON exposure at the same concentration. Moreover, an immunofluorescence experiment of intestinal epithelial proteins, such as E-cadherin, claudin, zonula occludens-1 (ZO-1), and occludin, exhibited that only basolateral DON exposure broke down intestinal epithelial integrity. A time-lapse analysis using enteroids from leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-enhanced green fluorescence protein (EGFP) transgenic mice and 5-ethynyl-2-deoxyuridine (EdU) assay indicated that only the basolateral DON exposure, but not luminal DON exposure, suppressed Lgr5+ stem cell count and proliferative cell ratio, respectively. These results revealed that basolateral DON exposure has larger impacts on intestinal barrier function and stem cells than luminal DON exposure. This is the first report that DON had different impacts on intestinal stem cells depending on the administration route. In addition, RNA sequencing analysis showed different expression of genes among enteroids after basolateral and luminal DON exposure.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Jejuno/metabolismo , Jejuno/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides , Permeabilidade , Células-Tronco/metabolismo , Células-Tronco/patologia , Fatores de Tempo
5.
J Cell Sci ; 131(16)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30072444

RESUMO

The role of the actin cytoskeleton in the sequence of physiological epithelial repair in the intact epithelium has yet to be elucidated. Here, we explore the role of actin in gastric repair in vivo and in vitro gastric organoids (gastroids). In response to two-photon-induced cellular damage of either an in vivo gastric or in vitro gastroid epithelium, actin redistribution specifically occurred in the lateral membranes of cells neighboring the damaged cell. This was followed by their migration inward to close the gap at the basal pole of the dead cell, in parallel with exfoliation of the dead cell into the lumen. The repair and focal increase of actin was significantly blocked by treatment with EDTA or the inhibition of actin polymerization. Treatment with inhibitors of myosin light chain kinase, myosin II, trefoil factor 2 signaling or phospholipase C slowed both the initial actin redistribution and the repair. While Rac1 inhibition facilitated repair, inhibition of RhoA/Rho-associated protein kinase inhibited it. Inhibitors of focal adhesion kinase and Cdc42 had negligible effects. Hence, initial actin polymerization occurs in the lateral membrane, and is primarily important to initiate dead cell exfoliation and cell migration to close the gap.


Assuntos
Actinas/metabolismo , Mucosa Gástrica/lesões , Organoides/lesões , Multimerização Proteica/fisiologia , Reepitelização/fisiologia , Estômago/citologia , Animais , Movimento Celular , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Organoides/citologia , Organoides/fisiologia , Polimerização , Regeneração/fisiologia , Estômago/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA