Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 42(2): 22, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564082

RESUMO

Chronic cerebral hypoperfusion (CCH) is a primary contributor to cognitive decline in the elderly. Enriched environment (EE) is proved to improve cognitive function. However, mechanisms involved remain unclear. The purpose of the study was exploring the mechanisms of EE in alleviating cognitive deficit in rats with CCH. To create a rat model of CCH, 2-vessel occlusion (2-VO) surgery was performed. All rats lived in standard or enriched environments for 4 weeks. Cognitive function was assessed using the novel object recognition test and Morris water maze test. The protein levels of glutamatergic synapses, neurotoxic reactive astrocytes, reactive microglia, and JAK2-STAT3 signaling pathway were measured using Western blot. The mRNA levels of synaptic regulatory factors, C1q, TNF-α, and IL-1α were identified using quantitative PCR. Immunofluorescence was used to detect glutamatergic synapses, neurotoxic reactive astrocytes, and reactive microglia, as well as the expression of p-STAT3 in astrocytes in the hippocampus. The results demonstrated that the EE mitigated cognitive impairment in rats with CCH and enhanced glutamatergic synaptogenesis. EE also inhibited the activation of neurotoxic reactive astrocytes. Moreover, EE downregulated microglial activation, levels of C1q, TNF-α and IL-1α and phosphorylation of JAK2 and STAT3. Our results suggest that inhibition of neurotoxic reactive astrocytes may be one of the mechanisms by which EE promotes glutamatergic synaptogenesis and improves cognitive function in rats with CCH. The downregulation of reactive microglia and JAK2-STAT3 signaling pathway may be involved in this process.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Humanos , Idoso , Animais , Ratos , Astrócitos , Complemento C1q , Fator de Necrose Tumoral alfa , Cognição , Janus Quinase 2 , Fator de Transcrição STAT3
2.
Neurosci Lett ; 737: 135318, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32846221

RESUMO

Increasing evidence demonstrated the promising effects of environmental enrichment (EE) on brain recovery and cognitive performance in animal models of various diseases. However, the effect and molecular mechanisms of EE on vascular dementia (VD) remain to be studied. The aim of this study was to explore the effect of EE on cognitive decline and its mechanism. Sprague-Dawley rats underwent 2-vessel occlusion (2-VO) surgery or sham operation. Subsequently, rats were kept in EE for 4 weeks. In Morris water maze (MWM) test, we demonstrated that EE significantly improved cognitive function in rats with VD. HE staining exhibited morphological changes of neurons and quantitative analysis of TUNEL showed increased apoptotic neurons in hippocampal CA1 region following 2-VO. Results from RT-qPCR showed up-regulation of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) after 2-VO. Western blotting analysis revealed enhanced toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88) and phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK) in 2-VO rats. Whereas administration of EE reduced apoptotic neurons, down-regulated inflammatory factors. Moreover, EE suppressed protein expression of TLR4-p38MAPK pathway. Spearman correlation analysis showed that improved cognitive function was associated with decreased expression of TLR4 and p-p38MAPK proteins. Thus, our study proved that EE has a prominent effect on cognitive impairment and neuronal damage following 2-VO by attenuating inflammation and apoptosis, which may be realized via inhibiting the TLR4-P38MAPK signaling pathway.


Assuntos
Disfunção Cognitiva/metabolismo , Demência Vascular/metabolismo , Meio Ambiente , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Disfunção Cognitiva/psicologia , Citocinas/metabolismo , Demência Vascular/psicologia , Modelos Animais de Doenças , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley
3.
Cell Physiol Biochem ; 41(4): 1445-1456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467977

RESUMO

BACKGROUND/AIMS: Enriched environment (EE) has been reported to exert neuroprotective effect in animal models of ischemic stroke. However, the underlying mechanism remains unclear. The purpose of this study was to investigate the effect of EE treatment on neuronal apoptosis in the periinfarct cortex after cerebral ischemia/reperfusion (I/R) injury. METHODS: The cerebral I/R injury was established by middle cerebral artery occlusion (MCAO). A set of behavioral tests including the modified neurological severity score (mNSS), limb-placing test and foot-fault test were conducted. The infarct volume and the neuronal survival rate were evaluated by Nissl staining. The morphology and ultrastructure of ischemic neurons was examined by transmission electron microscopy. Neuronal apoptosis was assessed by double labeling of TdT-mediated dUTP-biotin nick end labeling (TUNEL) with NeuN. The expressions of apoptosis-related proteins were tested by western blotting and immunohistochemical labeling. RESULTS: EE treatment improved neurological function, reduced infarct volume, increased neuronal survival rate and alleviated the morphological and ultrastructural damage of neurons (especially mitochondria) after I/R injury. EE treatment reduced the neuronal apoptosis, increased B cell lymphoma/leukemia-2 (Bcl-2) protein levels while decreased Bcl-2-associated X protein (Bax), cytochrome c, caspase-3 expressions and Bax/Bcl-2 ratio in the periinfarct cortex after cerebral I/R injury. CONCLUSION: Our findings suggest that EE treatment inhibits neuronal apoptosis in the periinfarct cortex after focal cerebral I/R injury, which may be one of the possible mechanisms underlying the neuroprotective effects of EE.


Assuntos
Apoptose , Encefalopatias/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Encefalopatias/patologia , Caspase 3/biossíntese , Córtex Cerebral/patologia , Citocromos c/biossíntese , Regulação da Expressão Gênica , Masculino , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Proteína X Associada a bcl-2/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA