Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730776

RESUMO

As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.

2.
J Chem Phys ; 149(2): 024702, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007400

RESUMO

On the basis of first-principles calculations, we investigated the structural and electronic properties of the two-dimensional (2D) Au-1,3,5 triethynylbenzene (Au-TEB) framework, which has been recently synthesized by homocoupling reactions in experiments. Featured by the C-Au-C linkage, the 2D Au-TEB network has a kagome lattice by Au atoms and a hexagonal lattice by organic molecules within the same metal-organic framework (MOF), which exhibits intrinsic half-metallicity with one spin channel metallic and the other spin channel fully insulating with a large energy gap of 2.8 eV. Two branches of kagome bands are located near the Fermi level, with each branch including one flat band and two Dirac bands, which originates from the out-of-plane dxz and dyz orbitals of Au and may lead to many exotic topological quantum phases. We further studied the adsorption of F atoms, Cl atoms, and small gas molecules including O2, CO, NO2, and NH3 on the Au-TEB network, aiming to exploit its potential applications in gas sensors. Detailed analyses on adsorption geometry, energy, molecular orbital interaction, and electronic structure modification suggest the great potential of Au-TEP as a promising alternative for gas sensing. We expect these results to expand the universe of low-dimensional half-metallic MOF structures and shed new light on their practical applications in nanoelectronics/spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA