Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 274(4): 867-878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236282

RESUMO

A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.


Assuntos
Depressão , Modelos Animais de Doenças , Habenula , Vias Neurais , Optogenética , Receptores de Dopamina D1 , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/fisiopatologia , Área Tegmentar Ventral/fisiologia , Habenula/fisiologia , Camundongos , Masculino , Receptores de Dopamina D1/metabolismo , Depressão/fisiopatologia , Depressão/etiologia , Vias Neurais/fisiopatologia , Camundongos Transgênicos , Estresse Psicológico/fisiopatologia , Camundongos Endogâmicos C57BL , Restrição Física , Neurônios/fisiologia
2.
Front Genet ; 14: 1067172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007952

RESUMO

Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes. Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines. Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.

3.
Curr Neuropharmacol ; 21(3): 621-650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35794770

RESUMO

As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Neutrófilos/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/patologia , Isquemia Encefálica/metabolismo
4.
Front Genet ; 13: 804190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664305

RESUMO

Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.

5.
Medicine (Baltimore) ; 99(23): e20059, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501968

RESUMO

BACKGROUND: Salvianolic acids (SA) has been widely used for the treatment of acute cerebral infarction (ACI) combined with basic western medicine therapy in China. This study was aimed to evaluate the efficacy and safety of SA on ACI treatment and its influence on neurological functions, activity of daily living, and cognitive functions. METHODS: We retrieved related articles from PubMed, the Cochrane Center Controlled Trials Register, EMBASE, Medline, Ovid, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database, and Wanfang Database without date and language restrictions. Finally, 58 randomized controlled trials were included from 239 retrieved records. Two researchers extracted the basic information and data from included articles and assessed the quality and analysis of data by using Review Manager 5.3. RESULTS: The administration of SA significantly increased the total clinical effective rate of ACI treatment (P < .001) and improved the National Institute of Health Stroke Scale scores, modified Rankin Scale scores, and Barthel Index scores after treatment and 3 months after ACI (P < .05). The activities of daily living scores in the SA group were significantly increased after treatment (P < .001), whereas they were remarkably decreased 3 months after ACI (P < .001) compared with that in the control group. Besides, SA profoundly promoted the recovery of Montreal Cognitive Assessment scores (P < .001). However, the use of SA increased the risk of adverse events occurrence (P = .007). CONCLUSION: SA combined with basic western medicine treatment could promote neurological functions, daily living activities, and cognitive functions recovery of ACI patients. Although SA increased the risk of adverse events occurrence, these adverse events were easily controlled or disappeared spontaneously.


Assuntos
Alcenos/uso terapêutico , Infarto Cerebral/tratamento farmacológico , Polifenóis/uso terapêutico , Atividades Cotidianas , Doença Aguda , Alcenos/administração & dosagem , Alcenos/efeitos adversos , Cognição , Terapia Combinada , Humanos , Polifenóis/administração & dosagem , Polifenóis/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Metanálise como Assunto
6.
J Neurol Sci ; 413: 116775, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197118

RESUMO

The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Monofosfato de Adenosina , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Células Endoteliais , Humanos , Acidente Vascular Cerebral/tratamento farmacológico
7.
J Neuroinflammation ; 15(1): 198, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976213

RESUMO

BACKGROUND: Stroke is the second leading cause of death worldwide and the most common cause of adult-acquired disability in many nations. Thus, attenuating the damage after ischemic injury and improving patient prognosis are of great importance. We have indicated that ischemic preconditioning (IP) can effectively reduce the damage of ischemia reperfusion and that inhibition of gap junctions may further reduce this damage. Although we confirmed that the function of gap junctions is closely associated with glutamate, we did not investigate the mechanism. In the present study, we aimed to clarify whether the blockade of cellular communication at gap junctions leads to significant reductions in the levels of glutamate released by astrocytes following cerebral ischemia. METHODS: To explore this hypothesis, we utilized the specific blocking agent carbenoxolone (CBX) to inhibit the opening and internalization of connexin 43 channels in an in vitro model of oxygen-glucose deprivation/re-oxygenation (OGD/R), following IP. RESULTS: OGD/R resulted in extensive astrocytic glutamate release following upregulation of hemichannel activity, thus increasing reactive oxygen species (ROS) generation and subsequent cell death. However, we observed significant increases in neuronal survival in neuron-astrocyte co-cultures that were subjected to IP prior to OGD/R. Moreover, the addition of CBX enhanced the protective effects of IP during the re-oxygenation period following OGD, by means of blocking the release of glutamate, increasing the level of the excitatory amino acid transporter 1, and downregulating glutamine expression. CONCLUSIONS: Our results suggest that combined use of IP and CBX represents a novel therapeutic strategy to attenuate damage from cerebral ischemia with minimal adverse side effects.


Assuntos
Carbenoxolona/farmacologia , Junções Comunicantes/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Embrião de Mamíferos , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA