Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38061549

RESUMO

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Assuntos
Motilidade Gastrointestinal , Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Motilidade Gastrointestinal/fisiologia , Neuroglia/metabolismo , Colinérgicos
2.
Elife ; 62017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28975893

RESUMO

Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.


Assuntos
Processamento Alternativo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/fisiopatologia , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Camundongos
3.
J Immunol ; 193(10): 5273-83, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305320

RESUMO

Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Antígenos de Bactérias/imunologia , Microbiota/imunologia , Células Mieloides/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Mielopoese/imunologia , Transdução de Sinais/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Evolução Biológica , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Regulação da Expressão Gênica , Vida Livre de Germes , Imunidade Inata , Intestinos/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/microbiologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Mielopoese/genética
4.
Nature ; 481(7380): 199-203, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22158124

RESUMO

The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.


Assuntos
Imunoglobulina A/imunologia , Intestino Delgado/citologia , Intestino Delgado/imunologia , Plasmócitos/citologia , Plasmócitos/imunologia , Animais , Células da Medula Óssea/citologia , Linhagem da Célula , Células Cultivadas , Quimera/imunologia , Citrobacter rodentium/imunologia , Técnicas de Cocultura , Feminino , Vida Livre de Germes , Granulócitos/citologia , Granulócitos/metabolismo , Imunidade Inata/imunologia , Imunoglobulina A/biossíntese , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Plasmócitos/metabolismo , Baço/citologia , Células Estromais/citologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
J Exp Med ; 205(2): 437-50, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18268033

RESUMO

Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 DeltainvG mutant lacking a functional type 3 secretion system-1 (DeltainvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c(+)CX3CR1(+) mucosal DCs. At later stages, the bacteria became associated with other (CD11c(-)CX3CR1(-)) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.


Assuntos
Colite/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium , Animais , Antígenos CD11/imunologia , Receptor 1 de Quimiocina CX3C , Ceco/imunologia , Ceco/patologia , Colite/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Receptores de Quimiocinas/imunologia , Infecções por Salmonella/patologia
6.
J Immunol ; 174(3): 1675-85, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15661931

RESUMO

Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.


Assuntos
Antígenos de Diferenciação/fisiologia , Proteínas de Bactérias/fisiologia , Colite/imunologia , Colite/microbiologia , Proteínas de Membrana/fisiologia , Receptores Imunológicos/fisiologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais/imunologia , 3-Fosfoshikimato 1-Carboxiviniltransferase , Proteínas Adaptadoras de Transdução de Sinal , Alquil e Aril Transferases/genética , Animais , Antígenos de Diferenciação/genética , Proteínas de Bactérias/genética , Colite/patologia , Deleção de Genes , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Leucócitos/imunologia , Leucócitos/microbiologia , Leucócitos/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Tecido Linfoide/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Transdução de Sinais/genética
7.
Infect Immun ; 71(5): 2839-58, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12704158

RESUMO

Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18(+) cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin beta-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyer's patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.


Assuntos
Colite/etiologia , Modelos Animais de Doenças , Salmonelose Animal/etiologia , Salmonella typhimurium/patogenicidade , Estreptomicina/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Colite/patologia , Feminino , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Lactobacillus/patogenicidade , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina , Camundongos , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Salmonelose Animal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA