Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828775

RESUMO

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Assuntos
Proteína BRCA1 , DNA Polimerase II , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/genética , Replicação do DNA/efeitos dos fármacos , Dano ao DNA , Linhagem Celular Tumoral , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética
2.
Mol Ther Methods Clin Dev ; 29: 145-159, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025950

RESUMO

DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.

3.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887294

RESUMO

The rapid integration of genomic technologies in clinical diagnostics has resulted in the detection of a multitude of missense variants whose clinical significance is often unknown. As a result, a plethora of computational tools have been developed to facilitate variant interpretation. However, choosing an appropriate software from such a broad range of tools can be challenging; therefore, systematic benchmarking with high-quality, independent datasets is critical. Using three independent benchmarking datasets compiled from the ClinVar database, we evaluated the performance of ten widely used prediction algorithms with missense variants from 21 clinically relevant genes, including BRCA1 and BRCA2. A fourth dataset consisting of 1053 missense variants was also used to investigate the impact of type 1 circularity on their performance. The performance of the prediction algorithms varied widely across datasets. Based on Matthews Correlation Coefficient and Area Under the Curve, SNPs&GO and PMut consistently displayed an overall above-average performance across the datasets. Most of the tools demonstrated greater sensitivity and negative predictive values at the expense of lower specificity and positive predictive values. We also demonstrated that type 1 circularity significantly impacts the performance of these tools and, if not accounted for, may confound the selection of the best performing algorithms.


Assuntos
Algoritmos , Biologia Computacional , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Software
4.
iScience ; 25(4): 104053, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35355521

RESUMO

Ubiquitination of proliferating cell nuclear antigen (PCNA) triggers pathways of DNA damage tolerance, including mutagenic translesion DNA synthesis, and comprises a cascade of reactions involving the E1 ubiquitin-activating enzyme Uba1, the E2 ubiquitin-conjugating enzyme Rad6, and the E3 ubiquitin ligase Rad18. We report here the discovery of a series of xanthenes that inhibit PCNA ubiquitination, Rad6∼ubiquitin thioester formation, and the Rad6-Rad18 interaction. Structure-activity relationship experiments across multiple assays reveal chemical and structural features important for different activities along the pathway to PCNA ubiquitination. The compounds that inhibit these processes are all a subset of the xanthen-3-ones we tested. These small molecules thus represent first-in-class probes of Rad6 function and the association of Rad6 and Rad18, the latter being a new inhibitory activity discovered for a small molecule, in the PCNA ubiquitination cascade and potential therapeutic agents to contain cancer progression.

5.
J Mol Biol ; 434(5): 167437, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990655

RESUMO

Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.


Assuntos
Dano ao DNA , DNA Helicases , Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Catálise , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445206

RESUMO

UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , Fase S/efeitos da radiação , Serpinas/metabolismo , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Humanos , Serpinas/genética
7.
Front Cell Dev Biol ; 9: 699966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262911

RESUMO

DNA interstrand crosslinks (ICLs) are covalently bound DNA lesions, which are commonly induced by chemotherapeutic drugs, such as cisplatin and mitomycin C or endogenous byproducts of metabolic processes. This type of DNA lesion can block ongoing RNA transcription and DNA replication and thus cause genome instability and cancer. Several cellular defense mechanism, such as the Fanconi anemia pathway have developed to ensure accurate repair and DNA replication when ICLs are present. Various structure-specific nucleases and translesion synthesis (TLS) polymerases have come into focus in relation to ICL bypass. Current models propose that a structure-specific nuclease incision is needed to unhook the ICL from the replication fork, followed by the activity of a low-fidelity TLS polymerase enabling replication through the unhooked ICL adduct. This review focuses on how, in parallel with the Fanconi anemia pathway, PCNA interactions and ICL-induced PCNA ubiquitylation regulate the recruitment, substrate specificity, activity, and coordinated action of certain nucleases and TLS polymerases in the execution of stalled replication fork rescue via ICL bypass.

8.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298704

RESUMO

Circulating tumor DNA (ctDNA) is increasingly employed in the screening, follow-up, and monitoring of the continuously evolving tumor; however, most ctDNA assays validated for clinical use cannot maintain the right balance between sensitivity, coverage, sample requirements, time, and cost. Here, we report our BC-monitor, a simple, well-balanced ctDNA diagnostic approach using a gene panel significant in breast cancer and an optimized multiplex PCR-based NGS protocol capable of identifying allele variant frequencies below 1% in cell-free plasma DNA. We monitored a cohort of 45 breast cancer patients prospectively enrolled into our study receiving neoadjuvant chemotherapy or endocrine therapy or palliative therapy for metastatic diseases. Their tumor mutation status was examined in the archived tumor samples and plasma samples collected before and continuously during therapy. Traceable mutations of the used 38-plex NGS assay were found in approximately two-thirds of the patients. Importantly, we detected new pathogenic variants in follow-up plasma samples that were not detected in the primary tumor and baseline plasma samples. We proved that the BC-monitor can pre-indicate disease progression four-six months earlier than conventional methods. Our study highlights the need for well-designed ctDNA monitoring during treatment and follow-up, integrated into a real-time treatment assessment, which could provide information on the active tumor DNA released into the blood.

9.
Cancers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068254

RESUMO

Germline mutations in the BRCA1 and BRCA2 genes are responsible for hereditary breast and ovarian cancer syndrome. Germline and somatic BRCA1/2 mutations may define therapeutic targets and refine cancer treatment options. However, routine BRCA diagnostic approaches cannot reveal the exact time and origin of BRCA1/2 mutation formation, and thus, the fine details of their contribution to tumor progression remain less clear. Here, we establish a diagnostic pipeline using high-resolution microscopy and laser microcapture microscopy to test for BRCA1/2 mutations in the tumor at the single-cell level, followed by deep next-generation sequencing of various tissues from the patient. To demonstrate the power of our approach, here, we describe a detailed single-cell-level analysis of an ovarian cancer patient we found to exhibit constitutional somatic mosaicism of a pathogenic BRCA2 mutation. Employing next-generation sequencing, BRCA2 c.7795G>T, p.(Glu2599Ter) was detected in 78% of reads in DNA extracted from ovarian cancer tissue and 25% of reads in DNA derived from peripheral blood, which differs significantly from the expected 50% of a hereditary mutation. The BRCA2 mutation was subsequently observed at 17-20% levels in the normal ovarian and buccal tissue of the patient. Together, our findings suggest that this mutation occurred early in embryonic development. Characterization of the mosaic mutation at the single-cell level contributes to a better understanding of BRCA mutation formation and supports the concept that the combination of single-cell and next-generation sequencing methods is advantageous over traditional mutational analysis methods. This study is the first to characterize constitutional mosaicism down to the single-cell level, and it demonstrates that BRCA2 mosaicism occurring early during embryogenesis can drive tumorigenesis in ovarian cancer.

10.
Front Vet Sci ; 7: 510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903517

RESUMO

Mesenchymal stem cells (MSC) are emerging as an effective therapeutic tool in treating canine osteoarthritis (OA). In this report, we focused on the questions of whether MSC transplantation has long-term beneficial effects for the improvement in motion and also evaluated the safety of MSC injection. Visceral adipose tissue, a surgical waste obtained during routine ovariectomy served as a source of allogeneic MSCs and used to treat OA. Altogether, fifty-eight dogs were transplanted in the study suffering from OA in the elbow (42 animals), hip (5), knee (8), ankle (2), and hock (1). The effect of MSC transplantation was evaluated by the degree of lameness at a 4-5-years follow-up period based on the owners' subjective observations. The results showed that 83% of the OA patients improved or retained improvement in lameness. Clinical safety of the treatment was assessed by evaluating the coincidence of tumors or other diseases and other adverse reactions (such as local inflammation) after MSC cell therapy. Two incidences of local inflammation for <1 week at the site of injection were reported. No other adverse reactions were detected post-treatment. Sixteen dogs died during the study, 4 due to cancer and 12 due to other diseases, diagnosed by veterinarians. Overall, our survey suggests that MSC transplantation has long-term beneficial effects in reducing lameness. Moreover, no enrichment in a specific cause of death was observed in the transplanted animals, compared to reported literature. Our data suggest that MSC treatment could be an effective and safe long-term therapy for canine OA.

11.
BMC Mol Cell Biol ; 21(1): 21, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228444

RESUMO

BACKGROUND: Ubiquitination and ubiquitin-like protein post-translational modifications play an enormous number of roles in cellular processes. These modifications are constituted of multistep reaction cascades. Readily implementable and robust methods to evaluate each step of the overall process, while presently limited, are critical to the understanding and modulation of the reaction sequence at any desired level, both in terms of basic research and potential therapeutic drug discovery and development. RESULTS: We developed multiple robust and reliable high-throughput assays to interrogate each of the sequential discrete steps in the reaction cascade leading to protein ubiquitination. As models for the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, the E3 ubiquitin ligase, and their ultimate substrate of ubiquitination in a cascade, we examined Uba1, Rad6, Rad18, and proliferating cell nuclear antigen (PCNA), respectively, in reconstituted systems. Identification of inhibitors of this pathway holds promise in cancer therapy since PCNA ubiquitination plays a central role in DNA damage tolerance and resulting mutagenesis. The luminescence-based assays we developed allow for the quantitative determination of the degree of formation of ubiquitin thioester conjugate intermediates with both E1 and E2 proteins, autoubiquitination of the E3 protein involved, and ubiquitination of the final substrate. Thus, all covalent adducts along the cascade can be individually probed. We tested previously identified inhibitors of this ubiquitination cascade, finding generally good correspondence between compound potency trends determined by more traditional low-throughput methods and the present high-throughput ones. CONCLUSIONS: These approaches are readily adaptable to other E1, E2, and E3 systems, and their substrates in both ubiquitination and ubiquitin-like post-translational modification cascades.


Assuntos
Antígeno Nuclear de Célula em Proliferação , Processamento de Proteína Pós-Traducional , Ubiquitinação , Dano ao DNA , Antígeno Nuclear de Célula em Proliferação/análise , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitinas/química , Ubiquitinas/metabolismo
12.
Sci Rep ; 9(1): 12801, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488855

RESUMO

We developed and implemented a reconstituted system to screen for modulators of the ubiquitination of proliferating cell nuclear antigen, a process that activates pathways of DNA damage tolerance and drug resistance. We identified the primary putatively health-beneficial green tea polyphenol epigallocatechin gallate (EGCG) and certain related small molecules as potent inhibitors of ubiquitination. EGCG directly and reversibly targets the ubiquitin-activating enzyme Uba1, blocking formation of the Uba1~ubiquitin thioester conjugate and thus ubiquitination and in the cell. Structure-activity relationship profiles across multiple biochemical and cellular assays for a battery of EGCG analogues revealed distinct chemical and mechanism-of-action clusters of molecules, with catechin gallates, alkyl gallates, and myricetin potently inhibiting ubiquitination. This study defines a number of related though distinct first-in-class inhibitors of ubiquitination, each series with its own unique activity pattern and mechanistic signature.


Assuntos
Catequina/análogos & derivados , Chá/química , Enzimas Ativadoras de Ubiquitina/química , Ubiquitinação , Catequina/química , Catequina/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Células HEK293 , Humanos , Antígeno Nuclear de Célula em Proliferação/química , Relação Estrutura-Atividade , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
13.
Cell Rep ; 24(12): 3251-3261, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232006

RESUMO

The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , RNA Helicases/metabolismo , Fatores de Transcrição/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HCT116 , Células HEK293 , Humanos , RNA Helicases/genética , Fatores de Transcrição/genética
14.
Nat Commun ; 9(1): 226, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335532

RESUMO

Quantifying heterogeneities within cell populations is important for many fields including cancer research and neurobiology; however, techniques to isolate individual cells are limited. Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that is capable of capturing individually targeted cells using widely available techniques. Using high-resolution microscopy, laser microcapture microscopy, image analysis, and machine learning, our technology enables scalable molecular genetic analysis of single cells, targetable by morphology or location within the sample.


Assuntos
Separação Celular/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Análise de Célula Única/métodos , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Aprendizado de Máquina , Células Piramidais/citologia , Células Piramidais/metabolismo , Reprodutibilidade dos Testes
15.
Can J Vet Res ; 81(1): 73-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28197017

RESUMO

Visceral adipose tissue (AT) obtained from surgical waste during routine ovariectomies was used as a source for isolating canine mesenchymal stem cells (MSCs). As determined by cytofluorimetry, passage 2 cells expressed MSC markers CD44 and CD90 and were negative for lineage-specific markers CD34 and CD45. The cells differentiated toward osteogenic, adipogenic, and chondrogenic directions. With therapeutic aims, 30 dogs (39 joints) suffering from elbow dysplasia (ED) and osteoarthritis (OA) were intra-articularly transplanted with allogeneic MSCs suspended in 0.5% hyaluronic acid (HA). A highly significant improvement was achieved without any medication as demonstrated by the degree of lameness during the follow-up period of 1 y. Control arthroscopy of 1 transplanted dog indicated that the cartilage had regenerated. Histological analysis of the cartilage biopsy confirmed that the regenerated cartilage was of hyaline type. These results demonstrate that transplantation of allogeneic adipose tissue-derived mesenchymal stem cells (AT-MSCs) is a novel, noninvasive, and highly effective therapeutic tool in treating canine elbow dysplasia.


Du tissu adipeux viscéral (TA) obtenu de résidus chirurgicaux lors d'ovariectomies de routine a été utilisé comme source pour isoler des cellules souches mésenchymateuses canines (CSMs). Tel que déterminé par cytofluorométrie, les cellules du 2e passage exprimaient les marqueurs de CSM CD44 et CD90, et étaient négatives pour les marqueurs spécifiques de lignée CD34 et CD45. Les cellules se sont différenciées dans des directions ostéogéniques, adipogéniques, et chondrogéniques. À des fins thérapeutiques, 30 chiens (39 articulations) souffrant de dysplasie du coude (DC) et d'ostéoarthrite (OA) ont reçu une transplantation intra articulaire de CSMs allogéniques en suspension dans 0,5 % d'acide hyaluronique (AH). Une amélioration hautement significative a été obtenue sans aucune médication tel que démontré par le degré de boiterie durant la période de suivi de 1 an. Une arthroscopie de contrôle de un des chiens ayant reçu une transplantation montrait que le cartilage s'était régénéré. L'analyse histologique de la biopsie du cartilage a confirmé que le cartilage régénéré était de type hyalin. Ces résultats démontrent que la transplantation de cellules souches mésenchymateuses dérivées de tissu adipeux allogène est un outil thérapeutique novateur, non-invasif, et très efficace pour traiter la dysplasie du coude chez le chien.(Traduit par Docteur Serge Messier).


Assuntos
Doenças do Cão/terapia , Membro Anterior , Transplante de Células-Tronco Mesenquimais/veterinária , Osteoartrite/veterinária , Animais , Cães , Membro Anterior/cirurgia , Gordura Intra-Abdominal/citologia , Articulações/cirurgia , Osteoartrite/terapia
16.
Nucleic Acids Res ; 45(6): 3172-3188, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28053116

RESUMO

Mutations in SPARTAN are associated with early onset hepatocellular carcinoma and progeroid features. A regulatory function of Spartan has been implicated in DNA damage tolerance pathways such as translesion synthesis, but the exact function of the protein remained unclear. Here, we reveal the role of human Spartan in facilitating replication of DNA-protein crosslink-containing DNA. We found that purified Spartan has a DNA-dependent protease activity degrading certain proteins bound to DNA. In concert, Spartan is required for direct DPC removal in vivo; we also show that the protease Spartan facilitates repair of formaldehyde-induced DNA-protein crosslinks in later phases of replication using the bromodeoxyuridin (BrdU) comet assay. Moreover, DNA fibre assay indicates that formaldehyde-induced replication stress dramatically decreases the speed of replication fork movement in Spartan-deficient cells, which accumulate in the G2/M cell cycle phase. Finally, epistasis analysis mapped these Spartan functions to the RAD6-RAD18 DNA damage tolerance pathway. Our results reveal that Spartan facilitates replication of DNA-protein crosslink-containing DNA enzymatically, as a protease, which may explain its role in preventing carcinogenesis and aging.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a DNA/química , Formaldeído/toxicidade , Células HEK293 , Humanos , Domínios Proteicos , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
DNA Repair (Amst) ; 49: 33-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838458

RESUMO

Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Células HEK293 , Humanos , Raios Ultravioleta
18.
Oncotarget ; 7(38): 61845-61859, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27533253

RESUMO

The development of breast and ovarian cancer is strongly connected to the inactivation of the BRCA1 and BRCA2 genes by different germline and somatic alterations, and their diagnosis has great significance in targeted tumor therapy, since recently approved PARP inhibitors show high efficiency in the treatment of BRCA-deficient tumors. This raises the need for new diagnostic methods that are capable of performing an integrative mutation analysis of the BRCA genes not only from germline DNA but also from formalin-fixed and paraffin-embedded (FFPE) tumor samples. Here we describe the development of such a methodology based on next-generation sequencing and a new bioinformatics software for data analysis. The diagnostic method was initially developed on an Illumina MiSeq NGS platform using germline-mutated stem cell lines and then adapted for the Ion Torrent PGM NGS platform as well. We also investigated the usability of NGS coverage data for the detection of copy number variations and exon deletions as a replacement of the conventional MLPA technique. Finally, we tested the developed workflow on FFPE samples from breast and ovarian cancer patients. Our method meets the sensitivity and specificity requirements for the genetic diagnosis of breast and ovarian cancers both from germline and FFPE samples.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Rearranjo Gênico , Mutação em Linhagem Germinativa , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biologia Computacional , DNA/genética , Análise Mutacional de DNA , Feminino , Formaldeído , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Parafina , Células-Tronco/metabolismo
19.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792895

RESUMO

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Motivos de Aminoácidos , DNA/biossíntese , DNA Polimerase III/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/fisiologia , Raios Ultravioleta
20.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26350214

RESUMO

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA