Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1861(11): 148283, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763239

RESUMO

Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro-reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF.


Assuntos
Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzima A-Transferases/metabolismo , Mitocôndrias/metabolismo , Succinato-CoA Ligases/metabolismo , Trypanosoma brucei brucei/metabolismo , Acil Coenzima A/metabolismo , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Mutação , Fosforilação Oxidativa , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
2.
Front Pharmacol ; 9: 997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233375

RESUMO

Human dihydroorotate dehydrogenase (HsDHODH) is a key enzyme of pyrimidine de novo biosynthesis pathway. It is located on the mitochondrial inner membrane and contributes to the respiratory chain by shuttling electrons to the ubiquinone pool. We have discovered ascofuranone (1), a natural compound produced by Acremonium sclerotigenum, and its derivatives are a potent class of HsDHODH inhibitors. We conducted a structure-activity relationship study and have identified functional groups of 1 that are essential for the inhibition of HsDHODH enzymatic activity. Furthermore, the binding mode of 1 and its derivatives to HsDHODH was demonstrated by co-crystallographic analysis and we show that these inhibitors bind at the ubiquinone binding site. In addition, the cytotoxicities of 1 and its potent derivatives 7, 8, and 9 were studied using human cultured cancer cells. Interestingly, they showed selective and strong cytotoxicity to cancer cells cultured under microenvironment (hypoxia and nutrient-deprived) conditions. The selectivity ratio of 8 under this microenvironment show the most potent inhibition which was over 1000-fold higher compared to that under normal culture condition. Our studies suggest that under microenvironment conditions, cancer cells heavily depend on the pyrimidine de novo biosynthesis pathway. We also provide the first evidence that 1 and its derivatives are potential lead candidates for drug development which target the HsDHODH of cancer cells living under a tumor microenvironment.

3.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2830-2842, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778484

RESUMO

BACKGROUND: In general, glycerol kinases (GKs) are transferases that catalyze phospho group transfer from ATP to glycerol, and the mechanism was suggested to be random bi-bi. The reverse reaction i.e. phospho transfer from glycerol 3-phosphate (G3P) to ADP is only physiologically feasible by the African trypanosome GK. In contrast to other GKs the mechanism of Trypanosoma brucei gambiense glycerol kinase (TbgGK) was shown to be in an ordered fashion, and proceeding via autophosphorylation. From the unique reaction mechanism of TbgGK, we envisaged its potential to possess phosphatase activity in addition to being a kinase. METHODS: Our hypothesis was tested by spectrophotometric and LC-MS/MS analyses using paranitrophenyl phosphate (pNPP) and TbgGK's natural substrate, G3P respectively. Furthermore, protein X-ray crystallography and site-directed mutagenesis were performed to examine pNPP binding, catalytic residues, and the possible reaction mechanism. RESULTS: In addition to its widely known and expected phosphotransferase (class II) activity, TbgGK can efficiently facilitate the hydrolytic cleavage of phosphoric anhydride bonds (a class III property). This phosphatase activity followed the classical Michaelis-Menten pattern and was competitively inhibited by ADP and G3P, suggesting a common catalytic site for both activities (phosphatase and kinase). The structure of the TGK-pNPP complex, and structure-guided mutagenesis implicated T276 to be important for the catalysis. Remarkably, we captured a crystallographic molecular snapshot of the phosphorylated T276 reaction intermediate. CONCLUSION: We conclude that TbgGK has both kinase and phosphatase activities. GENERAL SIGNIFICANCE: This is the first report on a bifunctional kinase/phosphatase enzyme among members of the sugar kinase family.


Assuntos
Glicerol Quinase/química , Monoéster Fosfórico Hidrolases/química , Conformação Proteica , Trypanosoma brucei gambiense/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Glicerofosfatos/metabolismo , Humanos , Nitrobenzenos/química , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Trypanosoma brucei gambiense/patogenicidade
4.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 152-158, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291751

RESUMO

Cystathionine γ-synthase (CGS; EC 2.5.1.48), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the formation of cystathionine from an L-homoserine derivative and L-cysteine in the first step of the transsulfuration pathway. Recombinant CGS from the thermoacidophilic archaeon Sulfolobus tokodaii (StCGS) was overexpressed in Escherichia coli and purified to homogeneity by heat treatment followed by hydroxyapatite and gel-filtration column chromatography. The purified enzyme shows higher enzymatic activity at 353 K under basic pH conditions compared with that at 293 K. Crystallization trials yielded three crystal forms from different temperature and pH conditions. Form I crystals (space group P21; unit-cell parameters a = 58.4, b = 149.3, c = 90.2 Å, ß = 108.9°) were obtained at 293 K under acidic pH conditions using 2-methyl-2,4-pentanediol as a precipitant, whereas under basic pH conditions the enzyme crystallized in form II at 293 K (space group C2221; unit-cell parameters a = 117.7, b = 117.8, c = 251.3 Å) and in form II' at 313 K (space group C2221; unit-cell parameters a = 107.5, b = 127.7, c = 251.1 Å) using polyethylene glycol 3350 as a precipitant. X-ray diffraction data were collected to 2.2, 2.9 and 2.7 Šresolution for forms I, II and II', respectively. Structural analysis of these crystal forms shows that the orientation of the bound PLP in form II is significantly different from that in form II', suggesting that the change in orientation of PLP with temperature plays a role in the thermophilic enzymatic activity of StCGS.


Assuntos
Proteínas Arqueais/química , Carbono-Oxigênio Liases/química , Fosfato de Piridoxal/química , Sulfolobus/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/metabolismo , Precipitação Química , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicóis/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoglicóis/química , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus/enzimologia
5.
Protein Sci ; 26(6): 1224-1230, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28329912

RESUMO

Methionine γ-lyse (MGL) catalyzes the α, γ-elimination of l-methionine and its derivatives as well as the α, ß-elimination of l-cysteine and its derivatives to produce α-keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site-directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51-Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5'-phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate-assisted catalysis.


Assuntos
Proteínas de Bactérias , Liases de Carbono-Enxofre , Mutação de Sentido Incorreto , Pseudomonas putida , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Especificidade por Substrato
6.
Int J Mol Sci ; 16(7): 15287-308, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198225

RESUMO

Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 µM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 µM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.


Assuntos
Anilidas/química , Anilidas/farmacologia , Fumaratos/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Parasitos/metabolismo , Animais , Ascaris suum/efeitos dos fármacos , Ascaris suum/enzimologia , Benzoquinonas/metabolismo , Sítios de Ligação , Respiração Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Oxirredutases/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Ácido Succínico/metabolismo , Sus scrofa
7.
Mol Microbiol ; 94(6): 1315-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315291

RESUMO

The glycerol kinase (GK) of African human trypanosomes is compartmentalized in their glycosomes. Unlike the host GK, which under physiological conditions catalyzes only the forward reaction (ATP-dependent glycerol phosphorylation), trypanosome GK can additionally catalyze the reverse reaction. In fact, owing to this unique reverse catalysis, GK is potentially essential for the parasites survival in the human host, hence a promising drug target. The mechanism of its reverse catalysis was unknown; therefore, it was not clear if this ability was purely due to its localization in the organelles or whether structure-based catalytic differences also contribute. To investigate this lack of information, the X-ray crystal structure of this protein was determined up to 1.90 Å resolution, in its unligated form and in complex with three natural ligands. These data, in conjunction with results from structure-guided mutagenesis suggests that the trypanosome GK is possibly a transiently autophosphorylating threonine kinase, with the catalytic site formed by non-conserved residues. Our results provide a series of structural peculiarities of this enzyme, and gives unexpected insight into the reverse catalysis mechanism. Together, they provide an encouraging molecular framework for the development of trypanosome GK-specific inhibitors, which may lead to the design of new and safer trypanocidal drug(s).


Assuntos
Glicerol Quinase/química , Glicerol Quinase/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei gambiense/enzimologia , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicerol , Glicerol Quinase/genética , Humanos , Modelos Moleculares , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Trypanosoma brucei gambiense/química , Tripanossomíase Africana/parasitologia
8.
Mitochondrion ; 13(6): 602-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24008124

RESUMO

The flavoprotein (Fp) subunit of human mitochondrial succinate-ubiquinone reductase (SQR, complex II) has isoforms (type I, type II). Type II Fp is predominantly expressed in some cancer and fetal tissues and those tissues are often exposed to ischemia. The present study shows that complex II with type II Fp has lower optimal pH than complex II with type I Fp, and type II Fp mRNA expression was induced by ischemia. The result suggests complex II with type II Fp may function in cells with low mitochondrial matrix pH caused by ischemia and its function is related to cellular adaptation to ischemia.


Assuntos
Adaptação Fisiológica , Complexo II de Transporte de Elétrons/fisiologia , Hipóxia/fisiopatologia , Desnutrição/fisiopatologia , Mitocôndrias/metabolismo , Sequência de Bases , Primers do DNA , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Mensageiro/genética
9.
Biosci Biotechnol Biochem ; 76(7): 1275-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785484

RESUMO

Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel ß-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.


Assuntos
Proteínas de Bactérias/química , Liases de Carbono-Enxofre/química , Subunidades Proteicas/química , Pseudomonas putida/enzimologia , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Dimerização , Histidina/química , Histidina/metabolismo , Ligação de Hidrogênio , Cinética , Lisina/química , Lisina/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pseudomonas putida/química , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
Biochim Biophys Acta ; 1820(5): 643-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22226661

RESUMO

Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.


Assuntos
Antiparasitários/uso terapêutico , Mitocôndrias/enzimologia , Complexos Multienzimáticos/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Parasitos/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Adulto , Animais , Metabolismo Energético/efeitos dos fármacos , Humanos , Complexos Multienzimáticos/metabolismo , Neoplasias/metabolismo , Succinato Desidrogenase/metabolismo
11.
Biochem Biophys Res Commun ; 417(3): 1002-6, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22209850

RESUMO

The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzi cpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.


Assuntos
Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Citoplasma/parasitologia , Pirimidinas/biossíntese , Trypanosoma cruzi/crescimento & desenvolvimento , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Citoplasma/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Trypanosoma cruzi/genética
12.
J Biochem ; 147(3): 317-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19861401

RESUMO

Free haem is known to be toxic to organs, tissues and cells. It enhances permeability by binding to a cell membrane, which leads to cell death, and damages lipids, proteins and DNA through the generation of reactive oxygen species. Lysine- and arginine-specific gingipains (Kgp and RgpA/B) are major proteinases that play an important role in the pathogenicity of a black-pigmented periodontopathogen named Porphyromonas gingivalis. One of the adhesin domains of gingipain, HbR could bind haem as an iron nutrient source for P. gingivalis. Using erythrocyte and its membrane as a model, results from the present study demonstrate that recombinant HbR expressed in Escherichia coli could inhibit haem-induced haemolysis, probably through removing haem from the haem-membrane complex and lowering free haem toxicity by mediating dimerization of haem molecules. The ability to protect a cell membrane from haem toxicity is a new function for HbR.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Heme/metabolismo , Porphyromonas gingivalis/metabolismo , Adesinas Bacterianas/genética , Membrana Celular/metabolismo , Cisteína Endopeptidases/genética , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Escherichia coli/metabolismo , Cisteína Endopeptidases Gingipaínas , Haptoglobinas/metabolismo , Hemólise , Humanos , Peroxidação de Lipídeos , Porphyromonas gingivalis/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Soroalbumina Bovina/metabolismo
13.
Atherosclerosis ; 204(2): 388-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19070857

RESUMO

Previous study showed that mulberry (Morus Alba L.) leaf (ML) ameliorates atherosclerosis in apoE(-/-) mice. Although the adipocytokine dysregulation is an important risk factor for atherosclerotic cardiovascular disease, the effect of ML on metabolic disorders related to adipocytokine dysregulation and inflammation has not been studied. Therefore, we studied the effects of ML in metabolic disorders and examined the mechanisms by which ML ameliorates metabolic disorders in db/db mice. We treated db/db mice with ML, pioglitazone, or both for 12 weeks and found that ML decreased blood glucose and plasma triglyceride. Co-treatment with ML and pioglitazone showed additive effects compared with pioglitazone. Moreover, their co-treatment attenuated the body weight increase observed under the pioglitazone treatment. ML treatment also increased the expression of adiponectin, and decreased the expression of TNF-alpha, MCP-1, and macrophage markers in white adipose tissue (WAT). Furthermore, ML decreased lipid peroxides and the expression of NADPH oxidase subunits in WAT and liver. Their co-treatment enhanced these effects. Thus, ML ameliorates adipocytokine dysregulation at least in part through inhibiting oxidative stress in WAT of db/db mice, and that ML may be a basis for a pharmaceutical for the treatment of the metabolic syndrome as well as reducing adverse effects of pioglitazone.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Antioxidantes/farmacologia , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Morus , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colesterol/sangue , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Mutantes , NADPH Oxidases/metabolismo , Obesidade/metabolismo , Pioglitazona , Extratos Vegetais/farmacologia , Folhas de Planta , Subunidades Proteicas , Fatores de Tempo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/metabolismo
14.
Biol Pharm Bull ; 31(8): 1483-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18670076

RESUMO

To gain insight into the mechanism of malarial hemozoin formation and to explore various biological groups for screening novel antimalarial drugs, we examined the effects of amino acids on the formation of beta-hematin (BH), which is a synthetic heme crystal structurally identical to hemozoin, in vitro. Our results showed that BH formation was significantly inhibited by basic amino acids (arginine, lysine, and histidine), probably due to the abilities of these amino acids to complex with heme. The results suggest an involvement in the improvement of the blood-schizonticidal activity of 8-quinolinamine when conjugated with basic amino acids. In addition, cysteine also inhibited BH formation, possibly due to its ability to reduce heme iron or decompose heme in acidic conditions. In contrast, BH formation was enhanced by amino acids with high hydrophobicity values (leucine, isoleucine, valine, methionine, and phenylalanine), with the exception of tryptophan at high temperature but was not affected in Tween-induced BH formation under normal physiological conditions. The present results can lead to further research on the development of new antimalarials by conjugating these amino acids, especially basic amino acids, with other substances, or by forming complex or small peptides that could have special effects on BH formation.


Assuntos
Aminoácidos/química , Heme/química , Malária/sangue , Fenômenos Químicos , Físico-Química , Cristalização , Cisteína/química , Hemeproteínas/metabolismo , Hemina/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Polissorbatos/química , Soluções , Tensão Superficial , Tensoativos/química
15.
FEBS J ; 275(3): 548-60, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18199285

RESUMO

Methionine gamma-lyase (MGL) (EC 4.4.1.11), which is present in certain lineages of bacteria, plants, and protozoa but missing in mammals, catalyzes the single-step degradation of sulfur-containing amino acids (SAAs) to alpha-keto acids, ammonia, and thiol compounds. In contrast to other organisms possessing MGL, anaerobic parasitic protists, namely Entamoeba histolytica and Trichomonas vaginalis, harbor a pair of MGL isozymes. The enteric protozoon En. histolytica shows various unique aspects in its metabolism, particularly degradation of SAAs. Trifluoromethionine (TFM), a halogenated analog of Met, has been exploited as a therapeutic agent against cancer as well as against infections by protozoan organisms and periodontal bacteria. However, its mechanism of action remains poorly understood. In addition, the physiological significance of the presence of two MGL isozymes in these protists remains unclear. In this study, we compared kinetic parameters of the wild-type and mutants, engineered by site-directed mutagenesis, of the two MGL isotypes from En. histolytica (EhMGL1 and EhMGL2) for various potential substrates and TFM. Intracellular concentrations of l-Met and l-Cys suggested that these SAAs are predominantly metabolized by EhMGL1, not by EhMGL2. It is unlikely that O-acetyl-l-serine is decomposed by EhMGLs, given the kinetic parameters of cysteine synthase reported previously. Comparison of the wild-type and mutants revealed that the contributions of several amino acids implicated in catalysis differ between the two isozymes, and that the degradation of TFM is less sensitive to alterations of these residues than is the degradation of physiological substrates. These results support the use of TFM to target MGL.


Assuntos
Liases de Carbono-Enxofre/antagonistas & inibidores , Entamoeba histolytica/enzimologia , Metionina/análogos & derivados , Proteínas de Protozoários/antagonistas & inibidores , Amebíase/prevenção & controle , Animais , Sequência de Bases , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Cisteína/genética , Cisteína/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Metionina/genética , Metionina/metabolismo , Metionina/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
16.
Parasitol Int ; 55(1): 75-81, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16316776

RESUMO

Malarial pigment, a unique hemozoin crystal composed of unit cells of heme dimers, is present in large amounts in circulating monocytes and neutrophils and can persist unchanged in macrophages for several months. In the present study, we investigated the effect of hemozoin not only on macrophages, but also on neutrophils. We used beta-hematin (BH), a chemically synthetic crystal structurally identical to hemozoin, for these studies. In vitro, BH up-regulated the expression of tumor necrosis factor-alpha in whole blood and in isolated peritoneal macrophages, indicating that hemozoin is able to stimulate monocytes. BH stimulated murine peritoneal neutrophils to express macrophage inflammatory protein-2 (MIP-2), a homologue of human interleukin-8 that is used as a marker of neutrophil activation. Injecting BH into the peritoneal cavity resulted in a dose-dependent migration of neutrophils and a high level of myeloperoxidase activity of peritoneal cells. Finally, BH directly induced neutrophil chemotaxis in vitro. Taken together, these results suggest that the malarial pigment hemozoin can activate leukocytes and may participate in the pathology of severe malaria.


Assuntos
Hemeproteínas/farmacologia , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL2 , Quimiocinas/biossíntese , Quimiotaxia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemeproteínas/síntese química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Malária/parasitologia , Masculino , Camundongos , Modelos Animais , Monócitos/fisiologia , Neutrófilos/fisiologia , Cavidade Peritoneal , RNA Mensageiro/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima
17.
J Biochem ; 134(2): 191-5, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12966066

RESUMO

Succinate-ubiquinone reductase (complex II) is an important enzyme complex in both the tricarboxylic acid cycle and aerobic respiration. A recent study showed that defects in human complex II are associated with cancers as well as mitochondrial diseases. Mutations in the four subunits of human complex II are associated with a wide spectrum of clinical presentations. Such tissue-specific clinical symptoms suggest the presence of multiple isoforms of the subunits, but subunit isoforms have not been previously reported. In the present study, we identified two distinct cDNAs for the human flavoprotein subunit (Fp) from a single individual, and demonstrated expression of these two isoforms in skeletal muscle, liver, brain, heart and kidney. Interestingly, one of the Fp isoforms was encoded as an intronless gene.


Assuntos
Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Flavoproteínas/química , Mitocôndrias/enzimologia , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Complexo II de Transporte de Elétrons/biossíntese , Feminino , Humanos , Íntrons/genética , Isoenzimas , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA