Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1270980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125876

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.

2.
J Mol Med (Berl) ; 101(9): 1141-1151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584738

RESUMO

Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.


Assuntos
Hepatopatias , Rim Policístico Autossômico Recessivo , Pré-Escolar , Camundongos , Humanos , Animais , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/patologia , Rim/metabolismo , Mutação , Fatores de Transcrição/genética , RNA Mensageiro/genética , Receptores de Superfície Celular/genética
3.
FASEB J ; 37(7): e23008, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37318790

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Camundongos , Animais , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/patologia , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais/metabolismo
4.
Front Mol Biosci ; 9: 946344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710876

RESUMO

Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.

5.
Sci Rep ; 11(1): 18274, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521872

RESUMO

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.


Assuntos
Proteínas de Membrana/genética , Rim Policístico Autossômico Recessivo/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Pré-Escolar , Regulação para Baixo , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Rim Policístico Autossômico Recessivo/patologia
6.
PLoS One ; 8(5): e64691, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717650

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is linked to the deletion of the D4Z4 arrays at chromosome 4q35. Recent studies suggested that aberrant expression of double homeobox 4 (DUX4) from the last D4Z4 repeat causes FSHD. The aim of this study is to determine transcriptomic responses to ectopically expressed DUX4 in human and mouse cells of muscle lineage. We expression profiled human rhabdomyosarcoma (RD) cells and mouse C2C12 cells transfected with expression vectors of DUX4 using the Affymetrix Human Genome U133 Plus 2.0 Arrays and Mouse Genome 430 2.0 Arrays, respectively. A total of 2267 and 150 transcripts were identified to be differentially expressed in the RD and C2C12 cells, respectively. Amongst the transcripts differentially expressed in the RD cells, MYOD and MYOG (2 fold, p<0.05), and six MYOD downstream targets were up-regulated in RD but not C2C12 cells. Furthermore, 13 transcripts involved in germline function were dramatically induced only in the RD cells expressing DUX4. The top 3 IPA canonical pathways affected by DUX4 were different between the RD (inflammation, BMP signaling and NRF-2 mediated oxidative stress) and the C2C12 cells (p53 signaling, cell cycle regulation and cellular energy metabolism). Amongst the 40 transcripts shared by the RD and C2C12 cells, UTS2 was significantly induced by 76 fold and 224 fold in the RD and C2C12 cells, respectively. The differential expression of MYOD, MYOG and UTS2 were validated using real-time quantitative RT-PCR. We further validated the differentially expressed genes in immortalized FSHD myoblasts and showed up-regulation of MYOD, MYOG, ZSCAN4 and UTS2. The results suggest that DUX4 regulates overlapped and distinct groups of genes and pathways in human and mouse cells as evident by the selective up-regulation of genes involved in myogenesis and gametogenesis in human RD and immortalized cells as well as the different molecular pathways identified in the cells.


Assuntos
Proteínas de Homeodomínio/fisiologia , Rabdomiossarcoma/patologia , Transcriptoma , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Primers do DNA , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA