Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298338

RESUMO

Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Adulto , Criança , Proteômica/métodos , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Biomarcadores/metabolismo
2.
Curr Biol ; 32(23): 5057-5068.e5, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347252

RESUMO

The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.


Assuntos
Metionina , Mitocôndrias , Mitocôndrias/metabolismo , Eucariotos/metabolismo
3.
Mol Cell Proteomics ; 21(1): 100174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763061

RESUMO

The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted ß-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.


Assuntos
Cisteína Proteases , Trichomonas vaginalis , Cisteína/metabolismo , Cisteína Proteases/metabolismo , Humanos , Lisossomos/metabolismo , Peptídeo Hidrolases/metabolismo , Fagossomos/metabolismo , Proteômica , Trichomonas vaginalis/metabolismo
4.
Plant Physiol ; 187(1): 103-115, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618129

RESUMO

Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.


Assuntos
Aminoácidos/metabolismo , Dioxigenases/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Oxirredução
5.
Sci Data ; 7(1): 160, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461585

RESUMO

The plasticity of cancer cell invasion represents substantial hindrance for effective anti-metastatic therapy. To better understand the cancer cells' plasticity, we performed complex transcriptomic and proteomic profiling of HT1080 fibrosarcoma cells undergoing mesenchymal-amoeboid transition (MAT). As amoeboid migratory phenotype can fully manifest only in 3D conditions, all experiments were performed with 3D collagen-based cultures. Two previously described approaches to induce MAT were used: doxycycline-inducible constitutively active RhoA expression and dasatinib treatment. RNA sequencing was performed with ribo-depleted total RNA. Protein samples were analysed with tandem mass tag (TMT)-based mass spectrometry. The data provide unprecedented insight into transcriptome and proteome changes accompanying MAT in true 3D conditions.


Assuntos
Movimento Celular , Colágeno/química , Invasividade Neoplásica , Proteoma , Transcriptoma , Linhagem Celular Tumoral , Fibrossarcoma/patologia , Humanos , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Proteína rhoA de Ligação ao GTP
6.
J Proteomics ; 204: 103411, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31176011

RESUMO

Integral membrane proteins are under-represented in standard proteomic analyses, mostly because of their low expression and absence of trypsin-cleavage sites in their hydrophobic transmembrane segments. Novel and effective strategies for membrane proteomic analysis aim at soluble N-glycosylated segments of integral membrane proteins (CSC, SPEG, N-glyco-FASP) or selectively target the hydrophobic transmembrane alpha-helical segments employing chemical peptide cleavage by CNBr (hpTC). We combined a solid phase enrichment of glycopeptides (SPEG) with a transmembrane segment-oriented hpTC method and a standard "detergent and trypsin" approach into a three-pronged "Pitchfork" strategy to maximize the membrane proteome coverage in human lymphoma cells. This strategy enabled the identification of >1200 integral membrane proteins from all cellular compartments, including 105 CD antigens, 24 G protein-coupled receptors, and 141 solute carrier transporters. The advantage of the combination lies in the complementarity of the methods. SPEG and hpTC target different sets of membrane proteins. HpTC provided identifications of proteins and peptides with significantly higher hydrophobicity compared to SPEG and detergent-trypsin approaches. Among all identified proteins, we observed 32 so-called "missing proteins". The Pitchfork strategy presented here is universally applicable and enables deep and fast description of membrane proteomes in only 3 LC-MS/MS runs per replicate. SIGNIFICANCE: Integral membrane proteins (IMPs) are encoded by roughly a quarter of human coding genes. Their functions and their specific localization makes IMPs highly attractive drug targets. In fact, roughly half of the currently approved drugs in medicine target IMPs. Our knowledge of membrane proteomes is, however, limited. We present a new strategy for the membrane proteome analysis that combines three complementary methods targeting different features of IMPs. Using the combined strategy, we identified over 1200 IMPs in human lymphoma tissue from all sub-cellular compartments in only 3 LC-MS/MS runs per replicate. The three-pronged "Pitchfork" strategy is universally applicable, and offers a fast way toward a reasonably concise description of membrane proteomes in multiple samples.


Assuntos
Linfoma de Célula do Manto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Animais , Cromatografia Líquida , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Espectrometria de Massas em Tandem
7.
J Proteomics ; 162: 11-19, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28442447

RESUMO

Major domestic mite allergens are present in feces. We present a detailed 2D-E-MS/MS proteomic analysis of the Dermatophagoides pteronyssinus feces. Precise cultivation yielded a pure fecal extract. We detected differences in fecal allergens/digestive enzymes between D. pteronyssinus and D. farinae using 2D-E fingerprinting, including unique information on species-specific protease isoforms. Proteomic analysis was performed by 2D-E coupled with MALDI-TOF/TOF identification. The species-specific differences in the fecal extracts of the mites were attributed to trypsin-like proteases known as group 3 allergens. In D. farinae, Der f 3 exhibited high abundance with a pI similar (acidic) to that of the cysteine protease Der f 1 and the chymotrypsin protease Der f 6, whereas in D. pteronyssinus, Der p 3 was rarely detected and exhibited low abundance only at basic pI. Moreover, Der p 9 was detected at a pI of ~ 10, in contrast to Der p 1 and Der p 6, suggesting different compartmentalization in the body. Overall, in D. pteronyssinus feces, allergens of groups 1, 2, 6, and 15 were quantitatively similar to those of D. farinae with the exception of the group 3 and 9 allergens. This work provides novel insights into mite-defecated proteins/digestive enzymes, which are important allergens. SIGNIFICANCE: Millions of people are affected by allergy and asthma, and their number is growing. In homes, the major triggers of allergy and asthma are the house dust mites Dermatophagoides farinae and D. pteronyssinus, and a clear understanding of the development of diseases caused by these mites is needed. The major sources of mite allergens are their feces, which are deposited in the environment and are easily inhaled as part of aeroplankton. However, descriptions of and comparisons between the major fecal allergens of these two mites are lacking. This study shows that similar group 1 (cysteine protease), 2 (NPC2 family), 6 (chymotrypsin) and 15 (chitinase-like) allergens are present in the feces of these two mite species, as determined by 2D-E mapping, whereas group 3 (trypsin) and 9 (collagenolytic protease) allergens in the feces of the two species are different. The results provide unique MS/MS mapped fingerprints of mite species-specific isoforms in feces. The presence of ubiquitin in mite feces suggests that these proteins participate in the post-translational modification of fecal proteins. The findings are essential for understanding differences between D. farinae and D. pteronyssinus with respect to immunoreactivity, protease activation mechanisms, association with microbes, and food utilization.


Assuntos
Dermatophagoides farinae/química , Dermatophagoides pteronyssinus/química , Fezes/química , Proteômica/métodos , Alérgenos/análise , Animais , Eletroforese em Gel Bidimensional , Isoformas de Proteínas , Especificidade da Espécie , Espectrometria de Massas em Tandem , Tripsina
8.
Environ Microbiol ; 19(3): 1091-1102, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902886

RESUMO

p-Cresol and indole are volatile biologically active products of the bacterial degradation of tyrosine and tryptophan respectively. They are typically produced by bacteria in animal intestines, soil and various sediments. Here, we demonstrate that the free-living eukaryote Mastigamoeba balamuthi and its pathogenic relative Entamoeba histolytica produce significant amounts of indole via tryptophanase activity. Unexpectedly, M. balamuthi also produces p-cresol in concentrations that are bacteriostatic to non-p-cresol-producing bacteria. The ability of M. balamuthi to produce p-cresol, which has not previously been observed in any eukaryotic microbe, was gained due to the lateral acquisition of a bacterial gene for 4-hydroxyphenylacetate decarboxylase (HPAD). In bacteria, the genes for HPAD and the S-adenosylmethionine-dependent activating enzyme (AE) are present in a common operon. In M. balamuthi, HPAD displays a unique fusion with the AE that suggests the operon-mediated transfer of genes from a bacterial donor. We also clarified that the tyrosine-to-4-hydroxyphenylacetate conversion proceeds via the Ehrlich pathway. The acquisition of the bacterial HPAD gene may provide M. balamuthi a competitive advantage over other microflora in its native habitat.


Assuntos
Archamoebae/genética , Cresóis/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Indóis/metabolismo , Animais , Bactérias/genética , Carboxiliases , Óperon , S-Adenosilmetionina/metabolismo
9.
Mol Microbiol ; 102(4): 701-714, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27582265

RESUMO

Iron-sulfur (Fe-S) clusters are essential cofactors that enable proteins to transport electrons, sense signals, or catalyze chemical reactions. The maturation of dozens of Fe-S proteins in various compartments of every eukaryotic cell is driven by several assembly pathways. The ubiquitous cytosolic Fe-S cluster assembly (CIA) pathway, typically composed of eight highly conserved proteins, depends on mitochondrial Fe-S cluster assembly (ISC) machinery. Giardia intestinalis contains one of the smallest eukaryotic genomes and the mitosome, an extremely reduced mitochondrion. Because the only pathway known to be retained within this organelle is the synthesis of Fe-S clusters mediated by ISC machinery, a likely function of the mitosome is to cooperate with the CIA pathway. We investigated the cellular localization of CIA components in G. intestinalis and the origin and distribution of CIA-related components and Tah18-like proteins in other Metamonada. We show that orthologs of Tah18 and Dre2 are missing in these eukaryotes. In Giardia, all CIA components are exclusively cytosolic, with the important exception of Cia2 and two Nbp35 paralogs, which are present in the mitosomes. We propose that the dual localization of Cia2 and Nbp35 proteins in Giardia might represent a novel connection between the ISC and the CIA pathways.


Assuntos
Giardia lamblia/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Citoplasma , Citosol/metabolismo , Giardia lamblia/genética , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Enxofre/metabolismo
10.
Front Physiol ; 7: 53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941650

RESUMO

Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.

11.
Proc Natl Acad Sci U S A ; 110(18): 7371-6, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589868

RESUMO

In most eukaryotes, the mitochondrion is the main organelle for the formation of iron-sulfur (FeS) clusters. This function is mediated through the iron-sulfur cluster assembly machinery, which was inherited from the α-proteobacterial ancestor of mitochondria. In Archamoebae, including pathogenic Entamoeba histolytica and free-living Mastigamoeba balamuthi, the complex iron-sulfur cluster machinery has been replaced by an ε-proteobacterial nitrogen fixation (NIF) system consisting of two components: NifS (cysteine desulfurase) and NifU (scaffold protein). However, the cellular localization of the NIF system and the involvement of mitochondria in archamoebal FeS assembly are controversial. Here, we show that the genes for both NIF components are duplicated within the M. balamuthi genome. One paralog of each protein contains an amino-terminal extension that targets proteins to mitochondria (NifS-M and NifU-M), and the second paralog lacks a targeting signal, thereby reflecting the cytosolic form of the NIF machinery (NifS-C and NifU-C). The dual localization of the NIF system corresponds to the presence of FeS proteins in both cellular compartments, including detectable hydrogenase activity in Mastigamoeba cytosol and mitochondria. In contrast, E. histolytica possesses only single genes encoding NifS and NifU, respectively, and there is no evidence for the presence of the NIF machinery in its reduced mitochondria. Thus, M. balamuthi is unique among eukaryotes in that its FeS cluster formation is mediated through two most likely independent NIF machineries present in two cellular compartments.


Assuntos
Amoeba/genética , Amoeba/metabolismo , Citosol/metabolismo , Duplicação Gênica , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Fixação de Nitrogênio/genética , Sequência de Aminoácidos , Entamoeba histolytica/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
12.
FEBS J ; 279(15): 2768-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22686835

RESUMO

Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Oxirredutases do Álcool/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Bases , Catálise , Primers do DNA/genética , Metabolismo Energético , Estabilidade Enzimática , Feminino , Interações Hospedeiro-Parasita , Humanos , Ferro/metabolismo , Cinética , Masculino , Modelos Biológicos , Oxirredução , Filogeografia , Proteínas de Protozoários/genética , Trichomonas vaginalis/genética , Trichomonas vaginalis/patogenicidade
13.
Mol Cell ; 46(4): 436-48, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22560924

RESUMO

Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Autofagia , Divisão Celular , Técnicas de Inativação de Genes , Genes Fúngicos , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Consumo de Oxigênio , Compostos de Amônio Quaternário/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA