Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5355, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504067

RESUMO

Peptide backbone α-N-methylations change the physicochemical properties of amide bonds to provide structural constraints and other favorable characteristics including biological membrane permeability to peptides. Borosin natural product pathways are the only known ribosomally encoded and posttranslationally modified peptides (RiPPs) pathways to incorporate backbone α-N-methylations on translated peptides. Here we report the discovery of type IV borosin natural product pathways (termed 'split borosins'), featuring an iteratively acting α-N-methyltransferase and separate precursor peptide substrate from the metal-respiring bacterium Shewanella oneidensis. A series of enzyme-precursor complexes reveal multiple conformational states for both α-N-methyltransferase and substrate. Along with mutational and kinetic analyses, our results give rare context into potential strategies for iterative maturation of RiPPs.


Assuntos
Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Metiltransferases/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Algoritmos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Cinética , Metilação , Metiltransferases/química , Metiltransferases/genética , Mutação , Peptídeos/química , Peptídeos/genética , Conformação Proteica , Multimerização Proteica , Ribossomos/genética , Ribossomos/metabolismo , Shewanella/enzimologia , Shewanella/genética , Especificidade por Substrato
2.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778550

RESUMO

With the growing global threat of antimicrobial resistance, novel strategies are required for combatting resistant pathogens. Combination therapy, in which multiple drugs are used to treat an infection, has proven highly successful in the treatment of cancer and HIV. However, this practice has proven challenging for the treatment of bacterial infections due to difficulties in selecting the correct combinations and dosages. An additional challenge in infection treatment is the polymicrobial nature of many infections, which may respond to antibiotics differently than a monoculture pathogen. This study tests whether patterns of antibiotic interactions (synergy, antagonism, or independence/additivity) in monoculture can be used to predict antibiotic interactions in an obligate cross-feeding coculture. Using our previously described weakest-link hypothesis, we hypothesized antibiotic interactions in coculture based on the interactions we observed in monoculture. We then compared our predictions to observed antibiotic interactions in coculture. We tested the interactions between 10 previously identified antibiotic combinations using checkerboard assays. Although our antibiotic combinations interacted differently than predicted in our monocultures, our monoculture results were generally sufficient to predict coculture patterns based solely on the weakest-link hypothesis. These results suggest that combination therapy for cross-feeding multispecies infections may be successfully designed based on antibiotic interaction patterns for their component species.


Assuntos
Antibacterianos , Infecções Bacterianas , Antibacterianos/farmacologia , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
3.
mSphere ; 5(2)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350096

RESUMO

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a "weakest-link" approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them.IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Interações Microbianas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escarro/microbiologia , Antibacterianos/farmacologia , Bactérias Anaeróbias/genética , Coinfecção/microbiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Microbiota/genética , Mucinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
4.
ISME J ; 12(11): 2723-2735, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991761

RESUMO

Microbes frequently rely on metabolites excreted by other bacterial species, but little is known about how this cross-feeding influences the effect of antibiotics. We hypothesized that when species rely on each other for essential metabolites, the minimum inhibitory concentration (MIC) for all species will drop to that of the "weakest link"-the species least resistant in monoculture. We tested this hypothesis in an obligate cross-feeding system that was engineered between Escherichia coli, Salmonella enterica, and Methylobacterium extorquens. The effect of tetracycline and ampicillin were tested on both liquid and solid media. In all cases, resistant species were inhibited at significantly lower antibiotic concentrations in the cross-feeding community than in monoculture or a competitive community. However, deviation from the "weakest link" hypothesis was also observed in cross-feeding communities apparently as result of changes in the timing of growth and cross-protection. Comparable results were also observed in a clinically relevant system involving facultative cross-feeding between Pseudomonas aeruginosa and an anaerobic consortium found in the lungs of cystic fibrosis patients. P. aeruginosa was inhibited by lower concentrations of ampicillin when cross-feeding than when grown in isolation. These results suggest that cross-feeding significantly alters tolerance to antibiotics in a variety of systems.


Assuntos
Farmacorresistência Bacteriana , Ampicilina/farmacologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Escherichia coli/efeitos dos fármacos , Humanos , Methylobacterium extorquens/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Tetraciclina/farmacologia
5.
BMC Evol Biol ; 12: 151, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909317

RESUMO

BACKGROUND: Specialization for ecological niches is a balance of evolutionary adaptation and its accompanying tradeoffs. Here we focus on the Lenski Long-Term Evolution Experiment, which has maintained cultures of Escherichia coli in the same defined seasonal environment for 50,000 generations. Over this time, much adaptation and specialization to the environment has occurred. The presence of citrate in the growth media selected one lineage to gain the novel ability to utilize citrate as a carbon source after 31,000 generations. Here we test whether other strains have specialized to rely on citrate after 50,000 generations. RESULTS: We show that in addition to the citrate-catabolizing strain, three other lineages evolving in parallel have acquired a dependence on citrate for optimal growth on glucose. None of these strains were stimulated indirectly by the sodium present in disodium citrate, nor exhibited even partial utilization of citrate as a carbon source. Instead, all three of these citrate-stimulated populations appear to rely on it as a chelator of iron. CONCLUSIONS: The strains we examine here have evolved specialization to their environment through apparent loss of function. Our results are most consistent with the accumulation of mutations in iron transport genes that were obviated by abundant citrate. The results present another example where a subtle decision in the design of an evolution experiment led to unexpected evolutionary outcomes.


Assuntos
Adaptação Fisiológica/genética , Citratos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Glucose/metabolismo , Isótopos de Carbono/análise , Quelantes/metabolismo , Escherichia coli/genética , Ferro/metabolismo , Citrato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA