Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960373

RESUMO

MXenes are a class of 2D transition-metal carbides, nitrides, and carbonitrides with exceptional properties, including substantial electrical and thermal conductivities, outstanding mechanical strength, and a considerable surface area, rendering them an appealing choice for gas sensors. This manuscript provides a comprehensive analysis of heterostructures based on MXenes employed in gas-sensing applications and focuses on addressing the limited understanding of the sensor mechanisms of MXene-based heterostructures while highlighting their potential to enhance gas-sensing performance. The manuscript begins with a broad overview of gas-sensing mechanisms in both pristine materials and MXene-based heterostructures. Subsequently, it explores various features of MXene-based heterostructures, including their composites with other materials and their prospects for gas-sensing applications. Additionally, the manuscript evaluates different engineering strategies for MXenes and compares their advantages to other materials while discussing the limitations of current state-of-the-art sensors. Ultimately, this review seeks to foster collaboration and knowledge exchange within the field, facilitating the development of high-performance gas sensors based on MXenes.

2.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956678

RESUMO

In this study, multifunctional chitosan-pluronic F127 with magnetic reduced graphene oxide (MRGO) nanocomposites were developed through the immobilization of chitosan and an amphiphilic polymer (pluronic F127) onto the MRGO. Physicochemical characterizations and in-vitro cytotoxicity of nanocomposites were investigated through field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, particle size analysis, vibrating sample magnetometer, Raman spectroscopy and resazurin-based in-vitro cytotoxicity assay. FESEM observation shows that the magnetic nanoparticles could tethered on the surface of MRGO, promoting the magnetic properties of the nanocomposites. FTIR identification analysis revealed that the chitosan/pluronic F127 were successfully immobilized on the surface of MRGO. Furthermore, α-mangosteen, as a model of natural drug compound, was successfully encapsulated onto the chitosan/pluronic F127@MRGO nanocomposites. According to in-vitro cytotoxicity assay, α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could significantly reduce the proliferation of human breast cancer (MFC-7) cells. Eventually, it would be anticipated that the novel α-mangosteen-loaded chitosan/pluronic F127@MRGO nanocomposites could be promoted as a new potential material for magnetically targeting and killing cancer cells.

3.
J Vis Exp ; (125)2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28715397

RESUMO

Magnetically and thermally sensitive poly(N-isopropylacrylamide) (PNIPAAm)/Fe3O4-NH2 microgels with the encapsulated anti-cancer drug curcumin (Cur) were designed and fabricated for magnetically triggered release. PNIPAAm-based magnetic microgels with a spherical structure were produced via a temperature-induced emulsion followed with physical-crosslinking by mixing PNIPAAm, polyethylenimine (PEI), and Fe3O4-NH2 magnetic nanoparticles. Because of their dispersity, the Fe3O4-NH2 nanoparticles were embedded inside the polymer matrix. The amine groups exposed on the Fe3O4-NH2 and PEI surface supported the spherical structure by physically crosslinking with the amide groups of the PNIPAAm. The hydrophobic anti-cancer drug curcumin can be dispersed in water after encapsulation into the microgels. The microgels were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis spectral analysis. Furthermore, magnetically triggered release was studied under an external high frequency magnetic field (HFMF). A significant "burst release" of curcumin was observed after applying the HFMF to the microgels due to the magnetic inductive heating (hyperthermia) effect. This manuscript describes the magnetically triggered controlled release of Cur-PNIPAAm/Fe3O4-NH2 encapsulated curcumin, which can be potentially applied for tumor therapy.


Assuntos
Resinas Acrílicas/química , Preparações de Ação Retardada/química , Magnetismo/métodos , Nanopartículas/química , Polietilenoimina/química , Temperatura
4.
Nanoscale Res Lett ; 12(1): 355, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28525950

RESUMO

Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

5.
Colloids Surf B Biointerfaces ; 140: 567-573, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26705859

RESUMO

Magnetic silica core/shell nanovehicles presenting atherosclerotic plaque-specific peptide-1 (AP-1) as a targeting ligand (MPVA-AP1 nanovehicles) have been prepared through a double-emulsion method and surface modification. Amphiphilic poly(vinyl alcohol) was introduced as a polymer binder to encapsulate various drug molecules (hydrophobic, hydrophilic, polymeric) and magnetic iron oxide (Fe3O4) nanoparticles. Under a high-frequency magnetic field, magnetic carriers (diameter: ca. 50 nm) incorporating the anti-cancer drug doxorubicin collapsed, releasing approximately 80% of the drug payload, due to the heat generated by the rapidly rotating Fe3O4 nanoparticles, thereby realizing rapid and accurate controlled drug release. Simultaneously, the magnetic Fe3O4 themselves could also kill the tumor cells through a hyperthermia effect (inductive heating). Unlike their ungrafted congeners (MPVA nanovehicles), the AP1-grafted nanovehicles bound efficiently to colorectal cancer cells (CT26-IL4Rα), thereby displaying tumor-cell selectivity. The combination of remote control, targeted dosing, drug-loading flexibility, and thermotherapy and chemotherapy suggests that magnetic nanovehicles such as MPVA-AP1 have great potential for application in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Preparações de Ação Retardada/farmacologia , Doxorrubicina/farmacologia , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos Férricos/química , Campos Magnéticos , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/ultraestrutura , Propriedades de Superfície , Carga Tumoral/efeitos dos fármacos
6.
Nanoscale Res Lett ; 10(1): 397, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459427

RESUMO

In this research, graphene nanosheets were functionalized with cationic poly (diallyldimethylammonium chloride) (PDDA) and citrate-capped gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) bio-detection application. AuNPs were synthesized by the traditional citrate thermal reduction method and then adsorbed onto graphene-PDDA nanohybrid sheets with electrostatic interaction. The nanohybrids were subject to characterization including X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, and X-ray photoelectron spectroscopy (XPS). The results showed that the diameter of AuNPs is about 15-20 nm immobilized on the graphene-PDDA sheets, and the zeta potential of various AuNPs/graphene-PDDA ratio is 7.7-38.4 mV. Furthermore, the resulting nanohybrids of AuNPs/graphene-PDDA were used for SERS detection of small molecules (adenine) and microorganisms (Staphylococcus aureus), by varying the ratios between AuNPs and graphene-PDDA. AuNPs/graphene-PDDA in the ratio of AuNPs/graphene-PDDA = 4:1 exhibited the strongest SERS signal in SERS detection of adenine and S. aureus. Thus, it is promising in the application of rapid and label-free bio-detection of bacteria or tumor cells.

7.
Nanoscale Res Lett ; 9(1): 497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25246875

RESUMO

In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 µM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA