Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 90(10): e0034722, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36154271

RESUMO

Placental immunity is critical for fetal health during pregnancy, as invading pathogens spread from the parental blood to the fetus through this organ. However, inflammatory responses in the placenta can adversely affect both the fetus and the pregnant person, and the balance between protective placental immune response and detrimental inflammation is poorly understood. Extracellular vesicles (EVs) are membrane-enclosed vesicles that play a critical role in placental immunity. EVs produced by placental trophoblasts mediate immune tolerance to the fetus and to the placenta itself, but these EVs can also activate detrimental inflammatory responses. The regulation of these effects is not well characterized, and the role of trophoblast EVs (tEVs) in the response to infection has yet to be defined. The Gram-positive bacterial pathogen Listeria monocytogenes infects the placenta, serving as a model to study tEV function in this context. We investigated the effect of L. monocytogenes infection on the production and function of tEVs, using a trophoblast stem cell (TSC) model. We found that tEVs from infected TSCs can induce the production of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in recipient cells. Surprisingly, this tEV treatment could confer increased susceptibility to subsequent L. monocytogenes infection, which has not been reported previously as an effect of EVs. Proteomic analysis and RNA sequencing revealed that tEVs from infected TSCs had altered cargo compared with those from uninfected TSCs. However, no L. monocytogenes proteins were detected in tEVs from infected TSCs. Together, these results suggest an immunomodulatory role for tEVs during prenatal infection.


Assuntos
Vesículas Extracelulares , Listeria monocytogenes , Listeriose , Humanos , Feminino , Gravidez , Trofoblastos/metabolismo , Listeria monocytogenes/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Placenta/microbiologia , Proteômica , Listeriose/microbiologia , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Células-Tronco
2.
Mol Cancer Ther ; 18(12): 2331-2342, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31451563

RESUMO

An emerging approach for cancer treatment employs the use of extracellular vesicles, specifically exosomes and microvesicles, as delivery vehicles. We previously demonstrated that microvesicles can functionally deliver plasmid DNA to cells and showed that plasmid size and sequence, in part, determine the delivery efficiency. In this study, delivery vehicles comprised of microvesicles loaded with engineered minicircle (MC) DNA that encodes prodrug converting enzymes developed as a cancer therapy in mammary carcinoma models. We demonstrated that MCs can be loaded into shed microvesicles with greater efficiency than their parental plasmid counterparts and that microvesicle-mediated MC delivery led to significantly higher and more prolonged transgene expression in recipient cells than microvesicles loaded with the parental plasmid. Microvesicles loaded with MCs encoding a thymidine kinase (TK)/nitroreductase (NTR) fusion protein produced prolonged TK-NTR expression in mammary carcinoma cells. In vivo delivery of TK-NTR and administration of prodrugs led to the effective killing of both targeted cells and surrounding tumor cells via TK-NTR-mediated conversion of codelivered prodrugs into active cytotoxic agents. In vivo evaluation of the bystander effect in mouse models demonstrated that for effective therapy, at least 1% of tumor cells need to be delivered with TK-NTR-encoding MCs. These results suggest that MC delivery via microvesicles can mediate gene transfer to an extent that enables effective prodrug conversion and tumor cell death such that it comprises a promising approach to cancer therapy.


Assuntos
DNA/uso terapêutico , Terapia Genética/métodos , Pró-Fármacos/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Transfecção
3.
Proc Natl Acad Sci U S A ; 114(4): E448-E456, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069945

RESUMO

Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells. CARTs are structurally unique and operate through an unprecedented mechanism, serving initially as oligo(α-amino ester) cations that complex, protect, and deliver mRNA and then change physical properties through a degradative, charge-neutralizing intramolecular rearrangement, leading to intracellular release of functional mRNA and highly efficient protein translation. With demonstrated utility in both cultured cells and animals, this mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Técnicas de Transferência de Genes , RNA Mensageiro/administração & dosagem , Animais , Carbocianinas , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C
4.
Proc Natl Acad Sci U S A ; 112(12): E1433-42, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25713383

RESUMO

Extracellular vesicles (EVs), specifically exosomes and microvesicles (MVs), are presumed to play key roles in cell-cell communication via transfer of biomolecules between cells. The biogenesis of these two types of EVs differs as they originate from either the endosomal (exosomes) or plasma (MVs) membranes. To elucidate the primary means through which EVs mediate intercellular communication, we characterized their ability to encapsulate and deliver different types of macromolecules from transiently transfected cells. Both EV types encapsulated reporter proteins and mRNA but only MVs transferred the reporter function to recipient cells. De novo reporter protein expression in recipient cells resulted only from plasmid DNA (pDNA) after delivery via MVs. Reporter mRNA was delivered to recipient cells by both EV types, but was rapidly degraded without being translated. MVs also mediated delivery of functional pDNA encoding Cre recombinase in vivo to tissues in transgenic Cre-lox reporter mice. Within the parameters of this study, MVs delivered functional pDNA, but not RNA, whereas exosomes from the same source did not deliver functional nucleic acids. These results have significant implications for understanding the role of EVs in cellular communication and for development of EVs as delivery tools. Moreover, studies using EVs from transiently transfected cells may be confounded by a predominance of pDNA transfer.


Assuntos
DNA/química , Exossomos/química , Animais , Apoptose , Transporte Biológico/genética , Comunicação Celular , Membrana Celular/metabolismo , Citometria de Fluxo , Inativação Gênica , Genes Reporter/genética , Células HEK293 , Humanos , Integrases/metabolismo , Lipídeos/química , Substâncias Macromoleculares/química , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia de Fluorescência , Fosfatidilserinas/química , Plasmídeos , Polietilenoglicóis/química , RNA Mensageiro/metabolismo , Tetraspanina 30/química
5.
Mol Imaging Biol ; 16(2): 158-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24008275

RESUMO

PURPOSE: Bone is a preferential site of breast cancer metastasis, and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. PROCEDURES: Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell proliferation and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX(®) immunoassays. RESULTS: BLI demonstrated increased MDA-MB-231-fLuc cell proliferation (p < 0.001) in the presence vs. absence of bones and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc cell colonization of bone, and MILLIPLEX(®) profiles of culture supernatants suggested breast/bone crosstalk. CONCLUSIONS: Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays.


Assuntos
Osso e Ossos/patologia , Neoplasias da Mama/patologia , Técnicas de Cocultura/métodos , Modelos Biológicos , Artroplastia de Quadril , Biomarcadores Tumorais/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Imuno-Histoquímica , Luciferases/metabolismo , Medições Luminescentes , Imagem Molecular
6.
Antimicrob Agents Chemother ; 55(6): 3058-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21464254

RESUMO

Tuberculosis is a leading cause of death worldwide. Resistance of Mycobacterium to antibiotics can make treatments less effective in some cases. We tested selected oligopeptoids--previously reported as mimics of natural host defense peptides--for activity against Mycobacterium tuberculosis and assessed their cytotoxicity. A tetrameric, alkylated, cationic peptoid (1-C13(4mer)) was most potent against M. tuberculosis and least cytotoxic, whereas an unalkylated analogue, peptoid 1(4mer), was inactive. Peptoid 1-C13(4mer) thus merits further study as a potential antituberculosis drug.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptoides/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Mycobacterium bovis/efeitos dos fármacos
7.
J Immunol ; 182(12): 7558-68, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494279

RESUMO

The delicate balance between protective immunity and inflammatory disease is challenged during sepsis, a pathologic state characterized by aspects of both a hyperactive immune response and immunosuppression. The events driven by systemic infection by bacterial pathogens on the T cell signaling network that likely control these responses have not been illustrated in great detail. We characterized how intracellular signaling within the immune compartment is reprogrammed at the single cell level when the host is challenged with a high level of pathogen. To accomplish this, we applied flow cytometry to measure the phosphorylation potential of key signal transduction proteins during acute bacterial challenge. We modeled the onset of sepsis by i.v. administration of avirulent strains of Listeria monocytogenes and Escherichia coli to mice. Within 6 h of bacterial challenge, T cells were globally restricted in their ability to respond to specific cytokine stimulations as determined by assessing the extent of STAT protein phosphorylation. Mechanisms by which this negative feedback response occurred included SOCS1 and SOCS3 gene up-regulation and IL-6-induced endocystosis of the IL-6 receptor. Additionally, macrophages were partially tolerized in their ability to respond to TLR agonists. Thus, in contrast to the view that there is a wholesale immune activation during sepsis, one immediate host response to blood-borne bacteria was induction of a refractory period during which leukocyte activation by specific stimulations was attenuated.


Assuntos
Bacteriemia/imunologia , Bacteriemia/metabolismo , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Interleucina-6/deficiência , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Fatores de Tempo , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA