Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928331

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Assuntos
Mitocôndrias , Neurônios , Estresse Oxidativo , Rotenona , Ubiquinona , Humanos , Ataxia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais , Debilidade Muscular/metabolismo , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/patologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/etiologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Rotenona/efeitos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/deficiência
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674161

RESUMO

Some 90 autoimmune disorders have been described in medical literature, affecting most of the tissues within the body. Autoimmune disorders may be difficult to treat, and there is a need to develop novel therapeutic strategies for these disorders. Autoimmune disorders are characterised by mitochondrial dysfunction, oxidative stress, and inflammation; there is therefore a rationale for a role for coenzyme Q10 in the management of these disorders, on the basis of its key role in normal mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. In this article, we have therefore reviewed the potential role of CoQ10, in terms of both deficiency and/or supplementation, in a range of autoimmune disorders.


Assuntos
Doenças Autoimunes , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Humanos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Animais , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/uso terapêutico , Mitocôndrias/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36356723

RESUMO

Recent trials have reported the ability of triheptanoin to improve clinical outcomes for the severe symptoms associated with long-chain fatty acid oxidation disorders, including very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. However, the milder myopathic symptoms are still challenging to treat satisfactorily. Myopathic pathogenesis is multifactorial, but oxidative stress is an important component. We have previously shown that metabolic stress increases the oxidative burden in VLCAD-deficient cell lines and can deplete the antioxidant glutathione (GSH). We investigated whether medium-chain fatty acids provide protection against GSH depletion during metabolic stress in VLCAD-deficient fibroblasts. To investigate the effect of differences in anaplerotic capacity, we included both even-(octanoate) and odd-numbered (heptanoate) medium-chain fatty acids. Overall, we show that modulation of the concentration of medium-chain fatty acids in culture media affects levels of GSH retained during metabolic stress in VLCAD-deficient cell lines but not in controls. Lowered glutamine concentration in the culture media during metabolic stress led to GSH depletion and decreased viability in VLCAD deficient cells, which could be rescued by both heptanoate and octanoate in a dose-dependent manner. Unlike GSH levels, the levels of total thiols increased after metabolic stress exposure, the size of this increase was not affected by differences in cell culture medium concentrations of glutamine, heptanoate or octanoate. Addition of a PPAR agonist further exacerbated stress-related GSH-depletion and viability loss, requiring higher concentrations of fatty acids to restore GSH levels and cell viability. Both odd- and even-numbered medium-chain fatty acids efficiently protect VLCADdeficient cells against metabolic stress-induced antioxidant depletion.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Caprilatos , Caprilatos/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Heptanoatos/metabolismo , Antioxidantes , Glutamina , Ácidos Graxos/metabolismo , Glutationa , Meios de Cultura
4.
Antioxidants (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421479

RESUMO

In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington's disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber's optic neuropathy.

5.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768878

RESUMO

Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.


Assuntos
Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Antioxidantes/farmacologia , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Mitofagia/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
Adv Exp Med Biol ; 1286: 77-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725346

RESUMO

Fibromyalgia is a common chronic pain condition of unknown aetiology, although mitochondrial dysfunction, oxidative stress, and inflammation have been implicated in the pathophysiology of this disorder. Treatment generally involves physiotherapy, anticonvulsants, and antidepressant therapy; however, the symptomatic relief conferred by these treatments can be very variable, and there is a need for additional therapeutic strategies. One such treatment which is gaining a lot of interest is the use of coenzyme Q10 (CoQ10) supplementation. The therapeutic efficacy associated with CoQ10 supplementation is thought to arise from the ability of supplementation to restore an underlying deficit in CoQ10 status which has been associated with fibromyalgia together with the ability of CoQ10 to improve mitochondrial activity, restore cellular antioxidant capacity, and ameliorate inflammation. This chapter outlines the evidence supporting the therapeutic utility of CoQ10 in the treatment of fibromyalgia.


Assuntos
Fibromialgia , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Fibromialgia/tratamento farmacológico , Fibromialgia/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Ubiquinona/análogos & derivados
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166100, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549744

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.


Assuntos
Bezafibrato/farmacologia , Síndrome Congênita de Insuficiência da Medula Óssea/tratamento farmacológico , Metabolismo Energético , Fibroblastos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Doenças Musculares/tratamento farmacológico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Estresse Oxidativo , Receptores Ativados por Proliferador de Peroxissomo/genética
8.
Neurochem Res ; 46(1): 131-139, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32306167

RESUMO

Organophosphate (OP) compounds are widely used as pesticides and herbicides and exposure to these compounds has been associated with both chronic and acute forms of neurological dysfunction including cognitive impairment, neurophysiological problems and cerebral ataxia with evidence of mitochondrial impairment being associated with this toxicity. In view of the potential mitochondrial impairment, the present study aimed to investigate the effect of exposure to commonly used OPs, dichlorvos, methyl-parathion (parathion) and chloropyrifos (CPF) on the cellular level of the mitochondrial electron transport chain (ETC) electron carrier, coenzyme Q10 (CoQ10) in human neuroblastoma SH-SY5Y cells. The effect of a perturbation in CoQ10 status was also evaluated on mitochondrial function and cell viability. A significant decreased (P < 0.0001) in neuronal cell viability was observed following treatment with all three OPs (100 µM), with dichlorvos appearing to be the most toxic to cells and causing an 80% loss of viability. OP treatment also resulted in a significant diminution in cellular CoQ10 status, with levels of this isoprenoid being decreased by 72% (P < 0.0001), 62% (P < 0.0005) and 43% (P < 0.005) of control levels following treatment with dichlorvos, parathion and CPF (50 µM), respectively. OP exposure was also found to affect the activities of the mitochondrial enzymes, citrate synthase (CS) and mitochondrial electron transport chain (ETC) complex II+III. Dichlorvos and CPF (50 µM) treatment significantly decreased CS activity by 38% (P < 0.0001) and 35% (P < 0.0005), respectively compared to control levels in addition to causing a 54% and 57% (P < 0.0001) reduction in complex II+III activity, respectively. Interestingly, although CoQ10 supplementation (5 µM) was able to restore cellular CoQ10 status and CS activity to control levels following OP treatment, complex II+III activity was only restored to control levels in neuronal cells exposed to dichlorvos (50 µM). However, post supplementation with CoQ10, complex II+III activity significantly increased by 33% (P < 0.0005), 25% (P < 0.005) and 35% (P < 0.0001) in dichlorvos, parathion and CPF (100 µM) treated cells respectively compared to non-CoQ10 supplemented cells. In conclusion, the results of this study have indicated evidence of neuronal cell CoQ10 deficiency with associated mitochondrial dysfunction following OP exposure. Although CoQ10 supplementation was able to ameliorate OP induced deficiencies in CS activity, ETC complex II+III activity appeared partially refractory to this treatment. Accordingly, these results indicate the therapeutic potential of CoQ10 supplementation in the treatment of OP poisoning. However, higher doses may be required to engender therapeutic efficacy.


Assuntos
Clorpirifos/toxicidade , Diclorvós/toxicidade , Inseticidas/toxicidade , Metil Paration/toxicidade , Neurônios/efeitos dos fármacos , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Ubiquinona/metabolismo , Ubiquinona/farmacologia
9.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266298

RESUMO

Methylmalonic acidemia is an inborn metabolic disease of propionate catabolism, biochemically characterized by accumulation of methylmalonic acid (MMA) to millimolar concentrations in tissues and body fluids. However, MMA's role in the pathophysiology of the disorder and its status as a "toxic intermediate" is unclear, despite evidence for its ability to compromise antioxidant defenses and induce mitochondrial dysfunction. Coenzyme Q10 (CoQ10) is a prominent electron carrier in the mitochondrial respiratory chain (MRC) and a lipid-soluble antioxidant which has been reported to be deficient in patient-derived fibroblasts and renal tissue from an animal model of the disease. However, at present, it is uncertain which factors are responsible for inducing this CoQ10 deficiency or the effect of this deficit in CoQ10 status on mitochondrial function. Therefore, in this study, we investigated the potential of MMA, the principal metabolite that accumulates in methylmalonic acidemia, to induce a cellular CoQ10 deficiency. In view of the severe neurological presentation of patients with this condition, human neuroblastoma SH-SY5Y cells were used as a neuronal cell model for this investigation. Following treatment with pathological concentrations of MMA (>0.5 mM), we found a significant (p = 0.0087) ~75% reduction in neuronal cell CoQ10 status together with a significant (p = 0.0099) decrease in MRC complex II-III activity at higher concentrations (>2 mM). The deficits in neuronal CoQ10 status and MRC complex II-III activity were associated with a loss of cell viability. However, no significant impairment of mitochondrial membrane potential (ΔΨm) was detectable. These findings indicate the potential of pathological concentrations of MMA to induce a neuronal cell CoQ10 deficiency with an associated loss of MRC complex II-III activity. However, in the absence of an impairment of ΔΨm, the contribution this potential deficit in cellular CoQ10 status makes towards the disease pathophysiology methylmalonic acidemia has yet to be fully elucidated.


Assuntos
Ácido Metilmalônico/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Transporte de Elétrons/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ubiquinona/metabolismo
10.
JIMD Rep ; 54(1): 45-53, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685350

RESUMO

Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous subtype of mitochondrial disease. We report two girls with ataxia and mitochondrial respiratory chain deficiency who were shown to have primary CoQ10 deficiency. Muscle histochemistry displayed signs of mitochondrial dysfunction-ragged red fibers, mitochondrial paracrystalline inclusions, and lipid deposits while biochemical analyses revealed complex II+III respiratory chain deficiencies. MRI brain demonstrated cerebral and cerebellar atrophy. Targeted molecular analysis identified a homozygous c.1015G>A, p.(Ala339Thr) COQ8A variant in subject 1, while subject 2 was found to harbor a single heterozygous c.1029_1030delinsCA variant predicting a p.Gln343_Val344delinsHisMet amino acid substitution. Subsequent investigations identified a large-scale COQ8A deletion in trans to the c.1029_1030delinsCA allele. A skin biopsy facilitated cDNA studies that confirmed exon skipping in the fibroblast derived COQ8A mRNA transcript. This report expands the molecular genetic spectrum associated with COQ8A-related mitochondrial disease and highlights the importance of thorough investigation of candidate pathogenic variants to establish phase. Rapid diagnosis is of the utmost importance as patients may benefit from therapeutic CoQ10 supplementation.

11.
FASEB J ; 34(6): 8139-8154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329133

RESUMO

Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre-clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non-human or non-neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra-nuclear inclusions in a polyQ length-dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.


Assuntos
Proteína Huntingtina/metabolismo , Corpos de Inclusão/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Células Cultivadas , Humanos , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo
12.
Methods Mol Biol ; 2138: 277-287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219756

RESUMO

Coenzyme Q10 (CoQ10) plays a key role as an electron carrier in the mitochondrial respiratory chain and as a cellular antioxidant molecule. A deficit in CoQ10 status may contribute to disease pathophysiology by causing a failure mitochondrial energy metabolism as well as compromising cellular antioxidant capacity. This chapter outlines the analytical methods used for determining cellular CoQ10 status using high-pressure liquid chromatography with ultraviolet (HPLC-UV) detection. In addition, we present a pharmacological procedure for establishing a human neuronal cell model of CoQ10 deficiency, for use in research studies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Neurônios/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ataxia/metabolismo , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Ubiquinona/deficiência , Ubiquinona/metabolismo , Raios Ultravioleta
13.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323957

RESUMO

Glioblastoma is the most common and malignant primary brain tumour in adults, with a dismal prognosis. This is partly due to considerable inter- and intra-tumour heterogeneity. Changes in the cellular energy-producing mitochondrial respiratory chain complex (MRC) activities are a hallmark of glioblastoma relative to the normal brain, and associate with differential survival outcomes. Targeting MRC complexes with drugs can also facilitate anti-glioblastoma activity. Whether mutations in the mitochondrial DNA (mtDNA) that encode several components of the MRC contribute to these phenomena remains underexplored. We identified a germ-line mtDNA mutation (m. 14798T > C), enriched in glioblastoma relative to healthy controls, that causes an amino acid substitution F18L within the core mtDNA-encoded cytochrome b subunit of MRC complex III. F18L is predicted to alter corresponding complex III activity, and sensitivity to complex III-targeting drugs. This could in turn alter reactive oxygen species (ROS) production, cell behaviour and, consequently, patient outcomes. Here we show that, despite a heterogeneous mitochondrial background in adult glioblastoma patient biopsy-derived cell cultures, the F18L substitution associates with alterations in individual MRC complex activities, in particular a 75% increase in MRC complex II_III activity, and a 34% reduction in CoQ10, the natural substrate for MRC complex III, levels. Downstream characterisation of an F18L-carrier revealed an 87% increase in intra-cellular ROS, an altered cellular distribution of mitochondrial-specific ROS, and a 64% increased sensitivity to clomipramine, a repurposed MRC complex III-targeting drug. In patients, F18L-carriers that received the current standard of care treatment had a poorer prognosis than non-carriers (373 days vs. 415 days, respectively). Single germ-line mitochondrial mutations could predispose individuals to differential prognoses, and sensitivity to mitochondrial targeted drugs. Thus, F18L, which is present in blood could serve as a useful non-invasive biomarker for the stratification of patients into prognostically relevant groups, one of which requires a lower dose of clomipramine to achieve clinical effect, thus minimising side-effects.


Assuntos
DNA Mitocondrial/genética , Mutação em Linhagem Germinativa/genética , Glioblastoma/genética , Clomipramina/farmacologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Mitocôndrias/metabolismo , Mutação/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
14.
Neurol Genet ; 5(2): e322, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31119193

RESUMO

OBJECTIVE: To characterize the phenotype in individuals with OPA3-related autosomal dominant optic atrophy and cataract (ADOAC) and peripheral neuropathy (PN). METHODS: Two probands with multiple affected relatives and one sporadic case were referred for evaluation of a PN. Their phenotype was determined by clinical ± neurophysiological assessment. Neuropathologic examination of sural nerve and skeletal muscle, and ultrastructural analysis of mitochondria in fibroblasts were performed in one case. Exome sequencing was performed in the probands. RESULTS: The main clinical features in one family (n = 7 affected individuals) and one sporadic case were early-onset cataracts (n = 7), symptoms of gastrointestinal dysmotility (n = 8), and possible/confirmed PN (n = 7). Impaired vision was an early-onset feature in another family (n = 4 affected individuals), in which 3 members had symptoms of gastrointestinal dysmotility and 2 developed PN and cataracts. The less common features among all individuals included symptoms/signs of autonomic dysfunction (n = 3), hearing loss (n = 3), and recurrent pancreatitis (n = 1). In 5 individuals, the neuropathy was axonal and clinically asymptomatic (n = 1), sensory-predominant (n = 2), or motor and sensory (n = 2). In one patient, nerve biopsy revealed a loss of large and small myelinated fibers. In fibroblasts, mitochondria were frequently enlarged with slightly fragmented cristae. The exome sequencing identified OPA3 variants in all probands: a novel variant (c.23T>C) and the known mutation (c.313C>G) in OPA3. CONCLUSIONS: A syndromic form of ADOAC (ADOAC+), in which axonal neuropathy may be a major feature, is described. OPA3 mutations should be included in the differential diagnosis of complex inherited PN, even in the absence of clinically apparent optic atrophy.

15.
Sci Rep ; 7(1): 15676, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142257

RESUMO

Isolated Complex I (CI) deficiency is the most commonly observed mitochondrial respiratory chain biochemical defect, affecting the largest OXPHOS component. CI is genetically heterogeneous; pathogenic variants affect one of 38 nuclear-encoded subunits, 7 mitochondrial DNA (mtDNA)-encoded subunits or 14 known CI assembly factors. The laboratory diagnosis relies on the spectrophotometric assay of enzyme activity in mitochondrially-enriched tissue homogenates, requiring at least 50 mg skeletal muscle, as there is no reliable histochemical method for assessing CI activity directly in tissue cryosections. We have assessed a validated quadruple immunofluorescent OXPHOS (IHC) assay to detect CI deficiency in the diagnostic setting, using 10 µm transverse muscle sections from 25 patients with genetically-proven pathogenic CI variants. We observed loss of NDUFB8 immunoreactivity in all patients with mutations affecting nuclear-encoding structural subunits and assembly factors, whilst only 3 of the 10 patients with mutations affecting mtDNA-encoded structural subunits showed loss of NDUFB8, confirmed by BN-PAGE analysis of CI assembly and IHC using an alternative, commercially-available CI (NDUFS3) antibody. The IHC assay has clear diagnostic potential to identify patients with a CI defect of Mendelian origins, whilst highlighting the necessity of complete mitochondrial genome sequencing in the diagnostic work-up of patients with suspected mitochondrial disease.


Assuntos
DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Biópsia , Núcleo Celular/genética , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Feminino , Imunofluorescência , Fluorimunoensaio/métodos , Heterogeneidade Genética , Humanos , Masculino , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Fosforilação Oxidativa
16.
Dis Model Mech ; 9(10): 1221-1229, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585884

RESUMO

'Developmental programming', which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed 'recuperated') in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1ß (IL1ß) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations.


Assuntos
Envelhecimento/fisiologia , Crescimento e Desenvolvimento , Fenômenos Fisiológicos da Nutrição Materna , Músculo Esquelético/patologia , Estresse Oxidativo , Animais , Antioxidantes , Biomarcadores/metabolismo , Dano ao DNA , Dieta , Feminino , Inflamação/patologia , Masculino , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Oxidantes/metabolismo , Fenótipo , Ratos Wistar , Encurtamento do Telômero
17.
Mitochondrion ; 30: 51-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27374853

RESUMO

We evaluated the coenzyme Q10 (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts. Our findings suggest that secondary CoQ deficiency is a common finding in OXPHOS and non-OXPHOS disorders. We hypothesize that cases of CoQ deficiency associated with OXPHOS defects could be an adaptive mechanism to maintain a balanced OXPHOS, although the mechanisms explaining these deficiencies and the pathophysiological role of secondary CoQ deficiency deserves further investigation.


Assuntos
Doenças Mitocondriais/patologia , Fosforilação Oxidativa , Ubiquinona/análogos & derivados , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Prevalência , Pele/patologia , Ubiquinona/deficiência , Adulto Jovem
18.
J Med Genet ; 53(9): 634-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27091925

RESUMO

BACKGROUND: Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis. METHODS: Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed. RESULTS: We identified a cohort of 10 patients from 8 families (7 families are of unrelated Irish ancestry) all of whom have short stature (<9th centile) and similar facial features including a prominent forehead, smooth philtrum and deep-set eyes associated with a recurrent homozygous c.64T>C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly. CONCLUSIONS: Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features-particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry-should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations.


Assuntos
Nanismo/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação/genética , Criança , Pré-Escolar , Exoma/genética , Fácies , Feminino , Estudos de Associação Genética/métodos , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Fenótipo
19.
Eur J Paediatr Neurol ; 20(3): 483-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26805434

RESUMO

BACKGROUND: The term Pontocerebellar hypoplasias collectively refers to a group of rare, heterogeneous and progressive disorders, which are frequently inherited in an autosomal recessive manner and usually have a prenatal onset. Mutations in the SEPSECS gene, leading to deficiency in selenoprotein biosynthesis, have been identified in recent times as the molecular etiology of different pre/perinatal onset neurological phenotypes, including cerebello-cerebral atrophy, Pontocerebellar hypoplasia type 2D and progressive encephalopathy with elevated lactate. These disorders share a similar spectrum of central (e.g., brain neurodegeneration with grey and white matter both involved) and peripheral (e.g., spasticity due to axonal neuropathy) nervous system impairment. CASE PRESENTATION: We hereby describe a 9-year-old boy with (i) a typical Pontocerebellar hypoplasia type 2D phenotype (e.g. profound mental retardation, spastic quadriplegia, ponto-cerebellar hypoplasia and progressive cerebral atrophy); (ii) optic nerve atrophy and (iii) mild secondary mitochondrial myopathy detected by muscle biopsy and respiratory chain enzyme analysis. We performed whole exome sequencing which identified a homozygous mutation of the SEPSECS gene (c.1001T > C), confirming the clinical suspect of Pontocerebellar hypoplasia type 2D. CONCLUSION: This report further corroborates the notion of a potential secondary mitochondrial dysfunction in the context of selenoprotein biosynthesis deficiency and also adds optic nerve atrophy as a new potential clinical feature within the SEPSECS-associated clinical spectrum. These findings suggest the presence of a possible shared genetic etiology among similar clinical entities characterized by the combination of progressive cerebello-cerebral and optic nerve atrophy and also stress the biological importance of selenoproteins in the regulation of neuronal and metabolic homeostasis.


Assuntos
Aminoacil-tRNA Sintetases/genética , Doenças Cerebelares/diagnóstico , Mutação/genética , Nervo Óptico/patologia , Selenoproteínas/deficiência , Atrofia , Doenças Cerebelares/complicações , Doenças Cerebelares/genética , Criança , Humanos , Deficiência Intelectual/etiologia , Masculino , Fenótipo
20.
Am J Clin Nutr ; 103(2): 579-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718412

RESUMO

BACKGROUND: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. DESIGN: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 µm) than in controls (5 ± 0.5 µm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 µg/mL per µg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). CONCLUSIONS: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Suplementos Nutricionais , Retardo do Crescimento Fetal/dietoterapia , Hepatite/prevenção & controle , Cirrose Hepática/prevenção & controle , Estresse Oxidativo , Ubiquinona/análogos & derivados , Animais , Citocinas/antagonistas & inibidores , Citocinas/sangue , Citocinas/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/imunologia , Retardo do Crescimento Fetal/fisiopatologia , Hepatite/etiologia , Hepatite/metabolismo , Hepatite/patologia , Hiperinsulinismo/etiologia , Hiperinsulinismo/prevenção & controle , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Complicações na Gravidez/fisiopatologia , Ratos Wistar , Organismos Livres de Patógenos Específicos , Ubiquinona/uso terapêutico , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA