Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Pharmacol ; 101(6): 400-407, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351821

RESUMO

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His1 and Ser2 and seventh transmembrane segment (TM7) receptor residue E373. We interrogated these interactions using systematic structure-activity analysis of peptide and receptor. His1 was critical for binding and cAMP responses, but its orientation was not critical, and substitution could independently modify affinity and efficacy. Ser2 was also critical, with all substitutions reducing peptide affinity and functional responses proportionally. Mutation of E373 to conserved acidic Asp (E373D), uncharged polar Gln (E373Q), or charge-reversed basic Arg (E373R) did not alter receptor expression, with all exhibiting secretin-dependent cAMP accumulation. All position 373 mutants displayed reduced binding affinities and cAMP potencies for many peptide analogs, although relative effects of position 1 peptides were similar whereas position 2 peptides exhibited substantial differences. The peptide including basic Lys in position 2 was active at SecR having acidic Glu in position 373 and at E373D while exhibiting minimal activity at those receptors in which an acidic residue is absent in this position (E373Q and E373R). In contrast, the peptide including acidic Glu in position 2 was equipotent with secretin at E373R while being much less potent than secretin at wild-type SecR and E373D. These data support functional importance of a charge-charge interaction between the amino-terminal region of secretin and the top of TM7. SIGNIFICANCE STATEMENT: This work refines our molecular understanding of the activation mechanisms of class B1 G protein-coupled receptors. The amino-terminal region of secretin interacts with the seventh transmembrane segment of its receptor with structural specificity and with a charge-charge interaction helping to drive functional activation.


Assuntos
Receptores Acoplados a Proteínas G , Secretina , Sequência de Aminoácidos , Mutagênese , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais , Secretina/química , Secretina/genética , Secretina/metabolismo , Relação Estrutura-Atividade
2.
Science ; 373(6553): 413-419, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437114

RESUMO

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility. We developed conformation-specific antibodies to trap ATP-bound AMPK in a fully inactive, dynamic state and determined its structure at 3.5-angstrom resolution using cryo-electron microscopy. A 180° rotation and 100-angstrom displacement of the kinase domain fully exposes the AL. On the basis of the structure and supporting biophysical data, we propose a multistep mechanism explaining how adenine nucleotides and pharmacological agonists modulate AMPK activity by altering AL phosphorylation and accessibility.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/imunologia , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas , Modelos Moleculares , Fosforilação , Conformação Proteica , Domínios Proteicos , Engenharia de Proteínas
3.
Biochem Pharmacol ; 185: 114451, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545115

RESUMO

The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs. Here we outline a comprehensive study comprising a structure-activity series based on commercially available analogs of the three hit scaffold sets A (2-sulfonyl pyrimidines), B (2-mercapto pyrimidines) and C (2-amino pyrimidines), which revealed determinants of activity, cooperativity and specificity. Structural optimization of original hits resulted in analog B2, which substantially enhances signaling of truncated secretin peptides and prolongs residence time of labeled secretin up to 13-fold in a dose-dependent manner. Furthermore, we found that investigated compounds display structural similarity to positive allosteric modulators (PAMs) active at the glucagon-like peptide-1 receptor (GLP-1R), and we were able to confirm cross-recognition of that receptor by a subset of analogs. Studies using SCTR and GLP-1R mutants revealed that scaffold A, but not B and C, likely acts via two distinct mechanisms, one of which constitutes covalent modification of Cys-347GLP-1R known from GLP-1R-selective modulators. The scaffolds identified in this study might not only serve as novel pharmacologic tools to decipher SCTR- or GLP-1R-specific signaling pathways, but also as structural leads to elucidate allosteric binding sites facilitating the future development of orally available therapeutic approaches targeting these receptors.


Assuntos
Descoberta de Drogas/métodos , Pirimidinas/química , Pirimidinas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade
4.
SLAS Discov ; 26(1): 1-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749201

RESUMO

The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect ß-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.


Assuntos
Desenvolvimento de Medicamentos/métodos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/química , Animais , Ciências Biocomportamentais , Células CHO , Cálcio/metabolismo , Proteínas de Transporte , Cricetulus , AMP Cíclico/metabolismo , Expressão Gênica , Genes Reporter , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
5.
Nat Commun ; 11(1): 4137, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811827

RESUMO

The class B secretin GPCR (SecR) has broad physiological effects, with target potential for treatment of metabolic and cardiovascular disease. Molecular understanding of SecR binding and activation is important for its therapeutic exploitation. We combined cryo-electron microscopy, molecular dynamics, and biochemical cross-linking to determine a 2.3 Å structure, and interrogate dynamics, of secretin bound to the SecR:Gs complex. SecR exhibited a unique organization of its extracellular domain (ECD) relative to its 7-transmembrane (TM) core, forming more extended interactions than other family members. Numerous polar interactions formed between secretin and the receptor extracellular loops (ECLs) and TM helices. Cysteine-cross-linking, cryo-electron microscopy multivariate analysis and molecular dynamics simulations revealed that interactions between peptide and receptor were dynamic, and suggested a model for initial peptide engagement where early interactions between the far N-terminus of the peptide and SecR ECL2 likely occur following initial binding of the peptide C-terminus to the ECD.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/química , Secretina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Insetos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/ultraestrutura , Secretina/metabolismo
6.
Biochem Pharmacol ; 177: 113929, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32217097

RESUMO

The secretin receptor is a prototypic class B GPCR with substantial and broad pharmacologic importance. The aim of this project was to develop a high affinity selective antagonist as a new and important pharmacologic tool and to aid stabilization of this receptor in an inactive conformation for ultimate structural characterization. Amino-terminal truncation of the natural 27-residue ligand reduced biological activity, but also markedly reduced binding affinity. This was rationally and experimentally overcome with lactam stabilization of helical structure and with replacement of residues with natural and unnatural amino acids. A key new step in this effort was the replacement of peptide residue Leu22 with L-cyclohexylalanine (Cha) to enhance potential hydrophobic interactions with receptor residues Leu31, Val34, and Phe92 that were predicted from molecular modeling. Alanine-replacement mutagenesis of these residues markedly affected ligand binding and biological activity. The optimal antagonist ligand, (Y10,c[E16,K20],I17,Cha22,R25)sec(6-27), exhibited high binding affinity (4 nM), similar to natural secretin, and exhibited no demonstrable biological activity to stimulate cAMP accumulation, intracellular calcium mobilization, or ß-arrestin-2 translocation. It acts as an orthosteric competitive antagonist, predicted to bind within the peptide-binding groove in the receptor extracellular domain. The analogous peptide that was one residue longer, retaining Thr5, exhibited partial agonist activity, while further truncation of even a single residue (Phe6) reduced binding affinity. This sec(6-27)-based peptide will be an important new tool for pharmacological and structural studies.


Assuntos
Desenho de Fármacos , Peptídeos/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Receptores dos Hormônios Gastrointestinais/química , Secretina/análogos & derivados , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores da Calcitonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo
7.
Nature ; 560(7720): 666-670, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135577

RESUMO

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Assuntos
Receptores Frizzled/química , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Via de Sinalização Wnt
8.
Genes Dev ; 31(9): 916-926, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28546512

RESUMO

Wnt/ß-catenin signaling is activated when extracellular Wnt ligands bind Frizzled (FZD) receptors at the cell membrane. Wnts bind FZD cysteine-rich domains (CRDs) with high affinity through a palmitoylated N-terminal "thumb" and a disulfide-stabilized C-terminal "index finger," yet how these binding events trigger receptor activation and intracellular signaling remains unclear. Here we report the crystal structure of the Frizzled-4 (FZD4) CRD in complex with palmitoleic acid, which reveals a CRD tetramer consisting of two cross-braced CRD dimers. Each dimer is stabilized by interactions of one hydrophobic palmitoleic acid tail with two CRD palmitoleoyl-binding grooves oriented end to end, suggesting that the Wnt palmitoleoyl group stimulates CRD-CRD interaction. Using bioluminescence resonance energy transfer (BRET) in live cells, we show that WNT5A stimulates dimerization of membrane-anchored FZD4 CRDs and oligomerization of full-length FZD4, which requires the integrity of CRD palmitoleoyl-binding residues. These results suggest that FZD receptors may form signalosomes in response to Wnt binding through the CRDs and that the Wnt palmitoleoyl group is important in promoting these interactions. These results complement our understanding of lipoprotein receptor-related proteins 5 and 6 (LRP5/6), Dishevelled, and Axin signalosome assembly and provide a more complete model for Wnt signalosome assembly both intracellularly and at the membrane.


Assuntos
Cisteína/química , Ácidos Graxos Monoinsaturados/química , Receptores Frizzled/química , Proteína Wnt-5a/metabolismo , Cristalografia por Raios X , Cisteína/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Receptores Frizzled/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
9.
Endocrinology ; 158(6): 1685-1700, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368447

RESUMO

Class B guanine nucleotide-binding protein (G protein)-coupled receptors form symmetrical homodimeric complexes along the lipid face of transmembrane segment 4 (TM4) and can form heterodimeric complexes, although their structure is unknown. The current study demonstrates that the lipid face of TM4 is also the predominant determinant for formation of heteroreceptor complexes between two class B receptors, secretin receptor (SecR) and glucagonlike peptide-1 receptor (GLP-1R), which are expressed on pancreatic islet cells. Because these receptors use the same interface for formation of homo- and heteroreceptor complexes, competitive forces may affect expression of different complexes. Assessment of SecR and GLP-1R dimeric complexes via recombinant expression in Chinese hamster ovary cells revealed that homodimeric receptor complexes were more stable than the heterodimeric complexes, and the homodimeric SecR/SecR is more stable than the GLP-1R/GLP-1R complex. Given the greater tendency for homodimeric compared with heterodimeric complex formation, the heteroreceptor complexes lacked the expression that might have been predicted by geometry alone. Nevertheless, cells coexpressing these receptors formed heterodimeric complexes that correlated with reduced intracellular calcium responses to secretin, but no change in the cyclic adenosine monophosphate responses to each natural agonist. This functional effect was confirmed in pancreatic islets isolated from wild-type and GLP-1R knockout mice. In these cells, the increased calcium response mediated by secretin in the absence of GLP-1R was paralleled by an increased glucose-dependent insulin response, indicating that the heterodimeric receptor complexes modulate secretin responses. Furthermore, the heterodimeric receptor complexes also mediated agonist-induced cross-receptor internalization, a process that could have broad functional significance in sites of natural receptor coexpression.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Secretina/genética , Secretina/metabolismo , Animais , Células CHO , Sinalização do Cálcio/genética , Células Cultivadas , Cricetinae , Cricetulus , Endocitose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Multimerização Proteica/genética , Transporte Proteico/genética
10.
Biochem J ; 474(11): 1879-1895, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28424368

RESUMO

Previous studies have indicated that the G-protein-coupled secretin receptor is present as a homodimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high-potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and spatial intensity distribution analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed us to demonstrate that the epidermal growth factor receptor is predominantly monomeric in the absence of ligand and while wild-type receptor was rapidly converted into a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that, at moderate expression levels, the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate-induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. In contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G-protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein-protein interactions between copies of the receptor polypeptide, while short-term treatment with secretin had no effect on organization of the wild-type receptor but increased the dimeric proportion of the mutated receptor variant.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/química , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Multimerização Proteica , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais/genética
11.
FASEB J ; 28(6): 2632-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24599969

RESUMO

Angiotensin (ANGII) and secretin (SCT) share overlapping, interdependent osmoregulatory functions in brain, where SCT peptide/receptor function is required for ANGII action, yet the molecular basis is unknown. Since receptors for these peptides (AT1aR, SCTR) are coexpressed in osmoregulatory centers, a possible mechanism is formation of a cross-class receptor heterocomplex. Here, we demonstrate such a complex and its functional importance to modulate signaling. Association of AT1aR with SCTR reduced ability of SCT to stimulate cyclic adenosine monophosphate (cAMP), with signaling augmented in presence of ANGII or constitutively active AT1aR. Several transmembrane (TM) peptides of these receptors were able to affect their conformation within complexes, reducing receptor BRET signals. AT1aR TM1 affected only formation and activity of the heterocomplex, without effect on homomers of either receptor, and reduced SCT-stimulated cAMP responses in cells expressing both receptors. This peptide was active in vivo by injection into mouse lateral ventricle, thereby suppressing water-drinking behavior after hyperosmotic shock, similar to SCTR knockouts. This supports the interpretation that active conformation of AT1aR is a key modulator of cAMP responses induced by SCT stimulation of SCTR. The SCTR/AT1aR complex is physiologically important, providing differential signaling to SCT in settings of hyperosmolality or food intake, modulated by differences in levels of ANGII.


Assuntos
Angiotensina II/fisiologia , AMP Cíclico/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Secretina/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Proteínas de Membrana/fisiologia , Camundongos , Pressão Osmótica/fisiologia , Multimerização Proteica , Estrutura Quaternária de Proteína/fisiologia , Receptor Tipo 1 de Angiotensina/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores dos Hormônios Gastrointestinais/agonistas
12.
Genes Dev ; 27(21): 2305-19, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186977

RESUMO

Norrin is a cysteine-rich growth factor that is required for angiogenesis in the eye, ear, brain, and female reproductive organs. It functions as an atypical Wnt ligand by specifically binding to the Frizzled 4 (Fz4) receptor. Here we report the crystal structure of Norrin, which reveals a unique dimeric structure with each monomer adopting a conserved cystine knot fold. Functional studies demonstrate that the novel Norrin dimer interface is required for Fz4 activation. Furthermore, we demonstrate that Norrin contains separate binding sites for Fz4 and for the Wnt ligand coreceptor Lrp5 (low-density lipoprotein-related protein 5) or Lrp6. Instead of inducing Fz4 dimerization, Norrin induces the formation of a ternary complex with Fz4 and Lrp5/6 by binding to their respective extracellular domains. These results provide crucial insights into the assembly and activation of the Norrin-Fz4-Lrp5/6 signaling complex.


Assuntos
Proteínas do Olho/química , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Células COS , Cristalografia por Raios X , Dimerização , Proteínas do Olho/genética , Receptores Frizzled/química , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Tetraspaninas/metabolismo , Fator de Crescimento Transformador beta/química , beta Catenina/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(45): 18607-12, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091034

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) is a family B G protein-coupled receptor and an important drug target for the treatment of type II diabetes, with activation of pancreatic GLP-1Rs eliciting glucose-dependent insulin secretion. Currently, approved therapeutics acting at this receptor are peptide based, and there is substantial interest in small molecule modulators for the GLP-1R. Using a variety of resonance energy transfer techniques, we demonstrate that the GLP-1R forms homodimers and that transmembrane helix 4 (TM4) provides the primary dimerization interface. We show that disruption of dimerization using a TM4 peptide, a minigene construct encoding TM4, or by mutation of TM4, eliminates G protein-dependent high-affinity binding to GLP-1(7-36)NH(2) but has selective effects on receptor signaling. There was <10-fold decrease in potency in cAMP accumulation or ERK1/2 phosphorylation assays but marked loss of intracellular calcium mobilization by peptide agonists. In contrast, there was near-complete abrogation of the cAMP response to an allosteric agonist, compound 2, but preservation of ERK phosphorylation. Collectively, this indicates that GLP-1R dimerization is important for control of signal bias. Furthermore, we reveal that two small molecule ligands are unaltered in their ability to allosterically modulate signaling from peptide ligands, demonstrating that these modulators act in cis within a single receptor protomer, and this has important implications for small molecule drug design.


Assuntos
Multimerização Proteica/efeitos dos fármacos , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , AMP Cíclico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Peptídeos/farmacologia , Subunidades Proteicas/metabolismo
14.
PLoS One ; 7(3): e33676, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438981

RESUMO

The glucagon receptor (GCGR) is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced ß-catenin stabilization and activated ß-catenin-mediated transcription. Activation of ß-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated ß-catenin signaling, we examined the role of Lrp5 in glucagon-induced ß-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced ß-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced ß-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and ß-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.


Assuntos
Receptores de Glucagon/metabolismo , beta Catenina/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/agonistas , Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Receptores de Glucagon/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
15.
Br J Pharmacol ; 166(1): 18-26, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21542831

RESUMO

The secretin receptor is a prototypic member of family B G protein-coupled receptors that binds and responds to a linear 27-residue peptide natural ligand. The carboxyl-terminal region of this peptide assumes a helical conformation that occupies the peptide-binding cleft within the structurally complex disulphide-bonded amino-terminal domain of this receptor. The amino terminus of secretin is directed toward the core helical bundle domain of this receptor that seems to be structurally distinct from the analogous region of family A G protein-coupled receptors. This amino-terminal region of secretin is critical for its biological activity, to stimulate Gs coupling and the agonist-induced cAMP response. While the natural peptide ligand is known to span the two key receptor domains, with multiple residue-residue approximation constraints well established, the orientation of the receptor amino terminus relative to the receptor core helical bundle domain is still unclear. Fluorescence studies have established that the mid-region and carboxyl-terminal end of secretin are protected by the receptor peptide-binding cleft and the amino terminus of secretin is most exposed to the aqueous milieu as it is directed toward the receptor core, with the mid-region of the peptide becoming more exposed upon receptor activation. Like other family B peptide hormone receptors, the secretin receptor is constitutively present in a structurally specific homo-dimeric complex built around the lipid-exposed face of transmembrane segment four. This complex is important for facilitating G protein association and achieving the high affinity state of this receptor.


Assuntos
Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Secretina/metabolismo , Fluorescência , Humanos , Ligantes , Peptídeos/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores dos Hormônios Gastrointestinais/química
16.
Am J Physiol Cell Physiol ; 302(3): C615-27, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22049215

RESUMO

Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization distinct from that being studied. This interpretation was further supported by the inability of peptide 309-323 to inhibit its d-Trp-OPE-stimulated internalization. Thus the 309-323 region of the type 1 CCK receptor affects antagonist-stimulated internalization of this receptor, although its mechanism and interacting partner are not yet clear.


Assuntos
Membrana Celular/metabolismo , Colecistocinina/análogos & derivados , Fragmentos de Peptídeos/metabolismo , Receptor de Colecistocinina A/química , Receptor de Colecistocinina A/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Arrestina/metabolismo , Células CHO , Linhagem Celular , Colecistocinina/metabolismo , Cricetinae , Endocitose , Humanos , Ligantes , Conformação Proteica , Transporte Proteico , Ratos , Deleção de Sequência
17.
Assay Drug Dev Technol ; 9(4): 394-402, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21395402

RESUMO

The success in screening for drug candidates is highly dependent on the power of the strategy implemented. In this work, we report and characterize a novel fluorescent benzodiazepine antagonist of the type 1 cholecystokinin receptor (3-(3-(7-fluoro-1-(2-isopropyl(4-methoxyphenyl)amino)-2-oxoethyl)-2,4-dioxo-5-phenyl-2,3,4,5-tetrahydro-1H-benzo[b][1,4]-diazepin-3-yl)ureido)benzoic acid) that can be used as a receptor ligand in a fluorescence polarization assay, which is ideally suited for the identification of small molecule allosteric modulators of this physiologically important receptor. By binding directly to the small molecule-docking region within the helical bundle of this receptor, this indicator can be displaced by many small molecule candidate drugs, even those that might not affect the binding of an orthosteric cholecystokinin-like peptide ligand. The biological, pharmacological, and fluorescence properties of this reagent are described, and proof-of-concept is provided in a fluorescence polarization assay utilizing this fluorescent benzodiazepine ligand.


Assuntos
Sítio Alostérico , Polarização de Fluorescência/métodos , Receptores da Colecistocinina/metabolismo , Animais , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Células CHO , Cricetinae , Devazepida/metabolismo , Devazepida/farmacologia , Descoberta de Drogas , Fluorescência , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Ligantes , Peptídeos , Ligação Proteica , Ensaio Radioligante , Receptor de Colecistocinina A/antagonistas & inibidores , Receptor de Colecistocinina A/metabolismo , Receptores da Colecistocinina/química , Sincalida/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Fluorescência , Relação Estrutura-Atividade
18.
Regul Pept ; 164(2-3): 113-9, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20541569

RESUMO

Dimerization of the prototypic family B G protein-coupled secretin receptor is determined by the lipid-exposed face of transmembrane segment four (TM4), and has substantial functional importance, facilitating G protein coupling. Recently, we demonstrated that the human secretin receptor elicits an inter-receptor bioluminescence resonance energy transfer (BRET) signal with most other human family B peptide receptors, except for the calcitonin receptor. In this study we have explored the occurrence and importance of calcitonin receptor oligomerization. Static and saturation receptor BRET were utilized to demonstrate that, unlike the human calcitonin receptor that does not yield a significant homomeric BRET signal, the rabbit calcitonin receptor exhibits strong resonance energy transfer. Within the lipid-exposed face of TM4, rabbit and human calcitonin receptors differ by a single amino acid (Arg236 in human; His in rabbit), while Thr253 that occurs in human and rabbit calcitonin receptors is unique across family B receptors. Mutating Arg236 or Thr253 of the human calcitonin receptor to residues found in the rabbit calcitonin receptor or the human secretin receptor (R236H, R236Y and T253A) resulted in generation of significant BRET signals. Similarly, mutation of Val250 of the human calcitonin receptor to another key lipid-facing residue found in the secretin receptor (V250I) also increased the receptor BRET signal. These data support the consistent theme of lipid-exposed residues of TM4 being important for the dimerization of the calcitonin receptor. However, rabbit and human calcitonin receptor constructs bound calcitonin and stimulated cAMP similarly, suggesting that differences in BRET could reflect differences in orientation or in the stability of homo-dimeric receptor complexes, which were nevertheless similarly effective in eliciting the functions attributed to that complex. The likelihood of human calcitonin receptor dimerization, even in the absence of a significant BRET signal, was further supported by data demonstrating that the peptide representing TM4 of this receptor that disrupts the rabbit receptor BRET signal, produced a right shift in the cAMP concentration-response curves for both rabbit and human receptors.


Assuntos
Multimerização Proteica/fisiologia , Receptores da Calcitonina/química , Receptores da Calcitonina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Multimerização Proteica/genética , Coelhos , Receptores da Calcitonina/genética , Homologia de Sequência de Aminoácidos
19.
J Biol Chem ; 285(16): 12435-44, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20172855

RESUMO

The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an alpha-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Técnicas In Vitro , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transfecção
20.
Methods Mol Biol ; 552: 293-304, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513658

RESUMO

Fluorescence resonance energy transfer (FRET) has been utilized to determine distances between a fluorescence donor and a fluorescence acceptor having appropriately overlapping spectra. In this chapter, we utilize this approach to establish distances between a fluorescence donor situated in a distinct position within a docked ligand and a fluorescence acceptor situated in a distinct position within its receptor. This technique is applicable to receptor expressed in the environment of an intact cell containing the full complement of signaling and regulatory proteins. A number of controls are necessary, including those establishing the normal function of the modified ligand and receptor, the absence of energy transfer to non-receptor proteins, and the specificity of transfer between the donor of interest and the acceptor of interest. We have utilized the example of FRET between a secretin peptide incorporating Alexa(488) and a secretin receptor construct derivatized with Alexa(568). The latter was prepared by the derivatization of a mono-cysteine-reactive receptor construct with a fluorescent methanethiosulfonate reagent. This approach can provide important spatial information that can be useful in the meaningful docking of a ligand at its receptor.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA