Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38894666

RESUMO

Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.

2.
Adv Healthc Mater ; 13(12): e2303928, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38291861

RESUMO

Chirality is an intrinsic cellular property that describes cell polarization biases along the left-right axis, apicobasal axis, or front-rear axes. Cell chirality plays a significant role in the arrangement of organs in the body as well as in the orientation of organelles, cytoskeletons, and cells. Vascular networks within the endometrium, the mucosal inner lining of the uterus, commonly display spiral architectures that rapidly form across the menstrual cycle. Herein, the role of endometrial-relevant extracellular matrix stiffness, composition, and soluble signals on endometrial endothelial cell chirality is systematically examined using a high-throughput microarray. Endometrial endothelial cells display marked patterns of chirality as individual cells and as cohorts in response to substrate stiffness and environmental cues. Vascular networks formed from endometrial endothelial cells also display shifts in chirality as a function of exogenous hormones. Changes in cellular-scale chirality correlate with changes in vascular network parameters, suggesting a critical role for cellular chirality in directing endometrial vessel network organization.


Assuntos
Endométrio , Células Endoteliais , Endométrio/citologia , Endométrio/irrigação sanguínea , Endométrio/metabolismo , Humanos , Feminino , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Polaridade Celular/fisiologia , Microvasos/citologia , Microvasos/fisiologia , Matriz Extracelular/metabolismo , Células Cultivadas
3.
J Biomed Mater Res A ; 112(3): 336-347, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37861296

RESUMO

Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC-mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP-2, RUNX2, COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN, CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Alicerces Teciduais/química , Ácido Ascórbico/farmacologia , Colágeno/química , Diferenciação Celular , Células Cultivadas
4.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014332

RESUMO

Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, we report a three-dimensional (3D) engineered model of acquired TMZ resistance using two isogenically-matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. We benchmark response of TMZ-resistant vs. TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform and further validate drug response at physiologically relevant TMZ concentrations. We show changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing our understanding of GBM progression and treatment response to guide the development of novel treatment strategies. Teaser: A hydrogel model to investigate the impact of acquired drug resistance on functional response in glioblastoma.

5.
Int J Oncol ; 63(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654190

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled­coil­helix­coiled­coil­helix domain­containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression­free survival. The CHCHD2 mRNA levels were increased in high­vs. low­grade glioma, IDH­wt GBMs, and in tumor vs. non­tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII­expressing patient­derived samples. The CRISPR­Cas9­mediated knockout of CHCHD2 in EGFRvIII­expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , Hipóxia , Mitocôndrias/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição
6.
Biomaterials ; 294: 122015, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701999

RESUMO

The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.


Assuntos
Mel , Células-Tronco Mesenquimais , Staphylococcus aureus Resistente à Meticilina , Osteogênese , Alicerces Teciduais , Colágeno/metabolismo , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia
7.
Biomater Adv ; 145: 213262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565669

RESUMO

Custom synthesis of extracellular matrix (ECM)-inspired materials for condition-specific reconstruction has emerged as a potentially translatable regenerative strategy. In skull defect reconstruction, nanoparticulate mineralized collagen glycosaminoglycan scaffolds (MC-GAG) have demonstrated osteogenic and anti-osteoclastogenic properties, culminating in the ability to partially heal in vivo skull defects without the addition of exogenous growth factors or progenitor cell loading. In an effort to reduce catabolism during early skull regeneration, we fabricated a composite material (MCGO) of MC-GAG and recombinant osteoprotegerin (OPG), an endogenous anti-osteoclastogenic decoy receptor. In the presence of differentiating osteoprogenitors, MCGO demonstrated an additive effect with endogenous OPG limited to the first 14 days of culture with total eluted and scaffold-bound OPG exceeding that of MC-GAG. Functionally, MCGO exhibited similar osteogenic properties as MC-GAG, however, MCGO significantly reduced maturation and resorptive activities of primary human osteoclasts. In a rabbit skull defect model, MCGO scaffold-reconstructed defects displayed higher mineralization as well as increased hardness and microfracture resistance compared to non-OPG functionalized MC-GAG scaffolds. The current work suggests that MCGO is a development in the goal of reaching a materials-based strategy for skull regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteoprotegerina , Animais , Humanos , Coelhos , Osteoprotegerina/metabolismo , Alicerces Teciduais , Células-Tronco Mesenquimais/metabolismo , Colágeno/farmacologia , Crânio/cirurgia , Crânio/metabolismo , Cicatrização
8.
Adv Sci (Weinh) ; 9(31): e2201888, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109186

RESUMO

Glioblastoma (GBM) tumor cells are found in the perivascular niche microenvironment and are believed to associate closely with the brain microvasculature. However, it is largely unknown how the resident cells of the perivascular niche, such as endothelial cells, pericytes, and astrocytes, influence GBM tumor cell behavior and disease progression. A 3D in vitro model of the brain perivascular niche developed by encapsulating brain-derived endothelial cells, pericytes, and astrocytes in a gelatin hydrogel is described. It is shown that brain perivascular stromal cells, namely pericytes and astrocytes, contribute to vascular architecture and maturation. Cocultures of patient-derived GBM tumor cells with brain microvascular cells are used to identify a role for pericytes and astrocytes in establishing a perivascular niche environment that modulates GBM cell invasion, proliferation, and therapeutic response. Engineered models provide unique insight regarding the spatial patterning of GBM cell phenotypes in response to a multicellular model of the perivascular niche. Critically, it is shown that engineered perivascular models provide an important resource to evaluate mechanisms by which intercellular interactions modulate GBM tumor cell behavior, drug response, and provide a framework to consider patient-specific disease phenotypes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Células Endoteliais/patologia , Encéfalo , Processos Neoplásicos , Proliferação de Células , Células Estromais/patologia , Microambiente Tumoral
9.
ACS Biomater Sci Eng ; 8(9): 3819-3830, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994527

RESUMO

The endometrium undergoes profound changes in tissue architecture and composition, both during the menstrual cycle as well as in the context of pregnancy. Dynamic remodeling processes of the endometrial extracellular matrix (ECM) are a major element of endometrial homeostasis, including changes across the menstrual cycle. A critical element of this tissue microenvironment is the endometrial basement membrane, a specialized layer of proteins that separates the endometrial epithelium from the underlying endometrial ECM. Bioengineering models of the endometrial microenvironment that present an appropriate endometrial ECM and basement membrane may provide an improved environment to study endometrial epithelial cell (EEC) function. Here, we exploit a tiered approach using two-dimensional high-throughput microarrays and three-dimensional gelatin hydrogels to define patterns of EEC attachment and cytokeratin 18 (CK18) expression in response to combinations of endometrial basement membrane proteins. We identify combinations (collagen IV + tenascin C; collagen I + collagen III; hyaluronic acid + tenascin C; collagen V; collagen V + hyaluronic acid; collagen III; and collagen I) that facilitate increased EEC attachment, increased CK18 intensity, or both. We also identify significant EEC mediated remodeling of the methacrylamide-functionalized gelatin matrix environment via analysis of nascent protein deposition. Together, we report efforts to tailor the localization of basement membrane-associated proteins and proteoglycans in order to investigate tissue-engineered models of the endometrial microenvironment.


Assuntos
Gelatina , Hidrogéis , Colágeno/metabolismo , Endométrio/metabolismo , Células Epiteliais , Matriz Extracelular/metabolismo , Feminino , Gelatina/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Queratina-18/metabolismo , Gravidez , Tenascina/metabolismo
10.
Anal Chem ; 94(35): 11999-12007, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36001072

RESUMO

Efforts to expand hematopoietic stem and progenitor cells (HSPCs) in vitro are motivated by their use in the treatment of leukemias and other blood and immune system diseases. The combinations of extrinsic cues within the hematopoietic stem cell (HSC) niche that lead to HSC fate decisions remain unknown. New noninvasive and location-specific techniques are needed to enable identification of the differentiation stages of individual hematopoietic cells on biomaterial microarray screening platforms that minimize the usage of rare HSCs. Here, we show that a combination of Raman microspectroscopy and partial least-squares discriminant analysis (PLS-DA) enables the location-specific identification of individual living cells from the six most immature hematopoietic cell populations, HSC, multipotent progenitor (MPP)-1, MPP-2, MPP-3, common myeloid progenitor, and common lymphoid progenitor. Better than 90% accuracy was achieved. We show that the accuracy of this differentiation stage identification was based on spectral features associated with cell biochemistries. This work establishes that PLS-DA can capture the subtle spectral variations between as many as six closely related cell populations in the presence of potentially significant within-population spectral variation. This noninvasive approach can be used to screen HSC fate decisions elicited by extrinsic cues within biomaterial microarray screening platforms.


Assuntos
Materiais Biocompatíveis , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Análise Discriminante , Camundongos , Análise Multivariada
11.
Am J Vet Res ; 83(6)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35544415

RESUMO

OBJECTIVE: To evaluate feline injection site-associated sarcoma (FISAS) and oral squamous cell carcinoma (FOSCC) cells in 3-D hydrogel-based cell cultures to determine chemosensitivity to carboplatin at concentrations comparable to those eluted from carboplatin-impregnated calcium sulfate hemihydrate (C-ICSH) beads. SAMPLE: 2 immortalized cell lines, each from a histologically confirmed primary FISAS and FOSCC. PROCEDURES: Hydrogels (10% wt/vol) were formed via UV exposure from methacrylamide-functionalized gelatin dissolved in PBSS. For each cell line, approximately 100,000 cells were encapsulated per hydrogel. Three cell-seeded 3-D hydrogels were evaluated for each carboplatin concentration (0, 150, 300, 450, and 600 µM) across 3 experiments. Drug efficacy was assessed by luminescence assay 72 hours after treatment. Growth of tumor cells treated with 300 µM or 600 µM carboplatin was evaluated using live-cell morphology imaging and confocal microscopy at 3, 7, and 14 days after treatment. RESULTS: Mean half-maximal inhibitory concentration (IC50) values for FISAS and FOSCC cells ranged from 123 to 171 µM and 155 to 190 µM, respectively, based on luminescence assay. Viability at 3, 7, and 14 days for both cell lines at 300 µM carboplatin was 50%, 25%, and 5% and at 600 µM carboplatin was 25%, 10%, and < 5%. CLINICAL RELEVANCE: 3-D hydrogel cell culture systems supported growth of feline tumor cells for determination of in vitro chemosensitivity. IC50s of each cell line were within the range of carboplatin concentrations eluted from C-ICSH beads. Cells from FISAS and FOSCC cell lines treated with carboplatin showed dose-dependent and time-dependent decreases in viability.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Neoplasias Bucais , Sarcoma , Animais , Sulfato de Cálcio , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Hidrogéis , Neoplasias Bucais/veterinária , Sarcoma/tratamento farmacológico , Sarcoma/veterinária
12.
Am J Vet Res ; 83(6)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35544417

RESUMO

OBJECTIVE: To evaluate feline injection site-associated sarcoma (FISAS) and oral squamous cell carcinoma (FOSCC) cells in 3-D hydrogel-based cell cultures to determine chemosensitivity to carboplatin at concentrations comparable to those eluted from carboplatin-impregnated calcium sulfate hemihydrate (C-ICSH) beads. SAMPLE: 2 immortalized cell lines, each from a histologically confirmed primary FISAS and FOSCC. PROCEDURES: Hydrogels (10% wt/vol) were formed via UV exposure from methacrylamide-functionalized gelatin dissolved in PBSS. For each cell line, approximately 100,000 cells were encapsulated per hydrogel. Three cell-seeded 3-D hydrogels were evaluated for each carboplatin concentration (0, 150, 300, 450, and 600 µM) across 3 experiments. Drug efficacy was assessed by luminescence assay 72 hours after treatment. Growth of tumor cells treated with 300 µM or 600 µM carboplatin was evaluated using live-cell morphology imaging and confocal microscopy at 3, 7, and 14 days after treatment. RESULTS: Mean half-maximal inhibitory concentration (IC50) values for FISAS and FOSCC cells ranged from 123 to 171 µM and 155 to 190 µM, respectively, based on luminescence assay. Viability at 3, 7, and 14 days for both cell lines at 300 µM carboplatin was 50%, 25%, and 5% and at 600 µM carboplatin was 25%, 10%, and < 5%. CLINICAL RELEVANCE: 3-D hydrogel cell culture systems supported growth of feline tumor cells for determination of in vitro chemosensitivity. IC50s of each cell line were within the range of carboplatin concentrations eluted from C-ICSH beads. Cells from FISAS and FOSCC cell lines treated with carboplatin showed dose-dependent and time-dependent decreases in viability.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Neoplasias Bucais , Sarcoma , Animais , Sulfato de Cálcio , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Hidrogéis , Neoplasias Bucais/veterinária , Sarcoma/tratamento farmacológico , Sarcoma/veterinária
13.
Tissue Eng Part A ; 28(7-8): 330-340, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34435883

RESUMO

Glioblastoma (GBM) displays diffusive invasion throughout the brain microenvironment, which is partially responsible for its short median survival rate (<15 months). Stem-like subpopulations (GBM stem-like cells, GSCs) are believed to play a central role in therapeutic resistance and poor patient prognosis. Given the extensive tissue remodeling and processes such as vessel co-option and regression that occur in the tumor microenvironment, it is essential to understand the role of metabolic constraint such as hypoxia on GBM cell populations. This work describes the use of a multidimensional gelatin hydrogel to culture patient-derived GBM cells, to evaluate the influence of hypoxia and the inclusion brain-mimetic hyaluronic acid on the relative activity of GSCs versus overall GBM cells. Notably, CD133+ GBM cell fraction is crucial for robust formation of tumor spheroids in multidimensional cultures. In addition, while the relative size of the CD133+ GBM subpopulation increased in response to both hypoxia and matrix-bound hyaluronan, we did not observe cell subtype-specific changes in invasion signaling pathway activation. Taken together, this study highlights the potential of biomimetic culture systems for resolving changes in the population dynamics and behavior of subsets of GBM specimens for the future development of precision medicine applications. Impact Statement This study describes a gelatin hydrogel platform to investigate the role of extracellular hyaluronic acid and hypoxia on the behavior of a CD133+ subset of cells within patient-derived glioblastoma (GBM) specimens. We report that the relative expansion of the CD133+ GBM stem cell-like population is strongly responsive to extracellular cues, highlighting the significance of biomimetic hydrogel models of the tumor microenvironment to investigate invasion and therapeutic response.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Gelatina/metabolismo , Glioblastoma/metabolismo , Humanos , Ácido Hialurônico/uso terapêutico , Hidrogéis/uso terapêutico , Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
14.
Adv Healthc Mater ; 11(7): e2102130, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936239

RESUMO

Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.


Assuntos
Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Materiais Biocompatíveis , Medula Óssea , Engenharia Tecidual
15.
Adv Healthc Mater ; 10(23): e2101467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585526

RESUMO

Targeted refinement of regenerative materials requires mechanistic understanding of cell-material interactions. The nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffold is shown to promote skull regeneration in vivo without additive exogenous growth factors or progenitor cells, suggesting potential for clinical translation. This work evaluates modulation of MC-GAG stiffness on canonical Wnt (cWnt) signaling. Primary human bone marrow-derived mesenchymal stem cells (hMSCs) are differentiated on two MC-GAG scaffolds (noncrosslinked, NX-MC, 0.3 kPa vs conventionally crosslinked, MC, 3.9 kPa). hMSCs increase expression of activated ß-catenin, the major cWnt intracellular mediator, and the mechanosensitive YAP protein with near complete subcellular colocalization on stiffer MC scaffolds. Overall Wnt pathway inhibition reduces activated ß-catenin and osteogenic differentiation, while elevating BMP4 and phosphorylated Smad1/5 (p-Smad1/5) expression on MC, but not NX-MC. Unlike Wnt pathway downregulation, isolated canonical Wnt inhibition with ß-catenin knockdown increases osteogenic differentiation and mineralization specifically on the stiffer MC. ß-catenin knockdown also increases p-Smad1/5, Runx2, and BMP4 expression only on the stiffer MC material. Thus, while stiffness-induced activation of the Wnt and mechanotransduction pathways promotes osteogenesis on MC-GAG, activated ß-catenin is a limiting agent and may serve as a useful target or readout for optimal modulation of stiffness in skeletal regenerative materials.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Células Cultivadas , Humanos , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
16.
Brain Res Bull ; 174: 220-229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166771

RESUMO

Brain tumors still lack effective treatments, and the mechanisms of tumor progression and therapeutic resistance are unclear. Multiple parameters affect cancer prognosis (e.g., type and grade, age, location, size, and genetic mutations) and election of suitable treatments is based on preclinical models and clinical data. However, most candidate drugs fail in human trials due to inefficacy. Cell lines and tissue culture plates do not provide physiologically relevant environments, and animal models are not able to adequately mimic characteristics of disease in humans. Therefore, increasing technological advances are focusing on in vitro and computational modeling to increase the throughput and predicting capabilities of preclinical systems. The extensive use of these therapeutic agents requires a more profound understanding of the tumor-stroma interactions, including neural tissue, extracellular matrix, blood-brain barrier, astrocytes and microglia. Microphysiological brain tumor models offer physiologically relevant vascularized 'minitumors' that can help deciphering disease mechanisms, accelerating the drug discovery and predicting patient's response to anticancer treatments. This article reviews progress in tumor-on-a-chip platforms that are designed to comprehend the particular roles of stromal cells in the brain tumor microenvironment.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Técnicas Analíticas Microfluídicas , Fisiologia/métodos , Animais , Neoplasias Encefálicas/ultraestrutura , Simulação por Computador , Humanos , Microambiente Tumoral
17.
Acta Biomater ; 131: 138-148, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161871

RESUMO

Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli through cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), thereby reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report the insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of Sortase A, a mammalian-inert enzyme. Notably, Sortase A exposure preserves stem cell surface markers, which are an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to produce artificial stem cell niches with tunable biophysical properties, intrinsic cell-interaction motifs, and orthogonal addition of bioactive crosslinks. STATEMENT OF SIGNIFICANCE: We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.


Assuntos
Gelatina , Hidrogéis , Animais , Células-Tronco Hematopoéticas , Maleimidas , Camundongos , Compostos de Sulfidrila
18.
Biomater Sci ; 9(12): 4496-4509, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008601

RESUMO

The tissue microenvironment contains a complex assortment of multiple cell types, matrices, and vessel structures, which is difficult to reconstruct in vitro. Here, we demonstrate model tumor microenvironments formed through direct writing of vasculature channels and tumor cell aggregates, within a cell-laden microgel matrix. Photocrosslinkable microgels provide control over local and global mechanics, while enabling the integration of virtually any cell type. Direct writing of a Pluronic sacrificial ink into a stromal cell-microgel suspension is used to form vessel structures for endothelialization, followed by printing of melanoma aggregates. Tumor cells migrate into the prototype vessels as a function of spatial location, thereby providing a measure of invasive potential. The integration of perfusable channels with multiple spatially defined cell types provides new avenues for modelling development and disease, with scope for both fundamental research and drug development efforts.


Assuntos
Microgéis , Hidrogéis , Impressão Tridimensional , Microambiente Tumoral
19.
APL Bioeng ; 5(2): 020902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33869984

RESUMO

Neurological disorders including traumatic brain injury, stroke, primary and metastatic brain tumors, and neurodegenerative diseases affect millions of people worldwide. Disease progression is accompanied by changes in the brain microenvironment, but how these shifts in biochemical, biophysical, and cellular properties contribute to repair outcomes or continued degeneration is largely unknown. Tissue engineering approaches can be used to develop in vitro models to understand how the brain microenvironment contributes to pathophysiological processes linked to neurological disorders and may also offer constructs that promote healing and regeneration in vivo. In this Perspective, we summarize features of the brain microenvironment in normal and pathophysiological states and highlight strategies to mimic this environment to model disease, investigate neural stem cell biology, and promote regenerative healing. We discuss current limitations and resulting opportunities to develop tissue engineering tools that more faithfully recapitulate the aspects of the brain microenvironment for both in vitro and in vivo applications.

20.
Adv Funct Mater ; 31(51)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558090

RESUMO

Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA