Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105665, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505931

RESUMO

The tight junction protein claudin 6 (CLDN6) is differentially expressed on cancer cells with almost no expression in healthy tissue. However, achieving therapeutic MAb specificity for this 4 transmembrane protein is challenging because it is nearly identical to the widely expressed CLDN9, with only 3 extracellular amino acids different. Most other CLDN6 MAbs, including those in clinical development are cross-reactive with CLDN9, and several trials have now been stopped. Here we isolated rare MAbs that bind CLDN6 with up to picomolar affinity and display minimal cross-reactivity with CLDN9, 22 other CLDN family members, or across the human membrane proteome. Amino acid-level epitope mapping distinguished the binding sites of our MAbs from existing clinical-stage MAbs. Atomic-level epitope mapping identified the structural mechanism by which our MAbs differentiate CLDN6 and CLDN9 through steric hindrance at a single molecular contact point, the γ carbon on CLDN6 residue Q156.

2.
Cell Rep Med ; 2(7): 100344, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337560

RESUMO

Glypican 2 (GPC2) is a MYCN-regulated, differentially expressed cell-surface oncoprotein and target for immune-based therapies in neuroblastoma. Here, we build on GPC2's immunotherapeutic attributes by finding that it is also a highly expressed, MYCN-driven oncoprotein on small-cell lung cancers (SCLCs), with significantly enriched expression in both the SCLC and neuroblastoma stem cell compartment.By solving the crystal structure of the D3-GPC2-Fab/GPC2 complex at 3.3 Å resolution, we further illustrate that the GPC2-directed antibody-drug conjugate (ADC; D3-GPC2-PBD), that links a human GPC2 antibody (D3) to DNA-damaging pyrrolobenzodiazepine (PBD) dimers, binds a tumor-specific, conformation-dependent epitope of the core GPC2 extracellular domain. We then show that this ADC induces durable neuroblastoma and SCLC tumor regression via induction of DNA damage, apoptosis, and bystander cell killing, notably with no signs of ADC-induced in vivo toxicity. These studies provide preclinical data to support the clinical translation of ADCs targeting GPC2.


Assuntos
Epitopos/química , Epitopos/metabolismo , Glipicanas/imunologia , Imunoconjugados/farmacologia , Neoplasias Pulmonares/patologia , Neuroblastoma/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Efeito Espectador/efeitos dos fármacos , Compartimento Celular , Morte Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dano ao DNA , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas Oncogênicas/metabolismo , Conformação Proteica
3.
Arterioscler Thromb Vasc Biol ; 41(2): 796-807, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380173

RESUMO

OBJECTIVE: The aim of this study was to unravel mechanisms whereby deficiency of the transcription factor Id3 (inhibitor of differentiation 3) leads to metabolic dysfunction in visceral obesity. We investigated the impact of loss of Id3 on hyaluronic acid (HA) production by the 3 HAS isoenzymes (HA synthases; -1, -2, and -3) and on obesity-induced adipose tissue (AT) accumulation of proinflammatory B cells. Approach and Results: Male Id3-/- mice and respective wild-type littermate controls were fed a 60% high-fat diet for 4 weeks. An increase in inflammatory B2 cells was detected in Id3-/- epididymal AT. HA accumulated in epididymal AT of high-fat diet-fed Id3-/- mice and circulating levels of HA were elevated. Has2 mRNA expression was increased in epididymal AT of Id3-/- mice. Luciferase promoter assays showed that Id3 suppressed Has2 promoter activity, while loss of Id3 stimulated Has2 promoter activity. Functionally, HA strongly promoted B2 cell adhesion in the AT and on cultured vascular smooth muscle cells of Id3-/- mice, an effect sensitive to hyaluronidase. CONCLUSIONS: Our data demonstrate that loss of Id3 increases Has2 expression in the epididymal AT, thereby promoting HA accumulation. In turn, elevated HA content promotes HA-dependent binding of B2 cells and an increase in the B2 cells in the AT, which contributes to AT inflammation.


Assuntos
Tecido Adiposo/metabolismo , Linfócitos B/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Proteínas Inibidoras de Diferenciação/metabolismo , Paniculite/metabolismo , Tecido Adiposo/imunologia , Animais , Linfócitos B/imunologia , Adesão Celular , Células Cultivadas , Técnicas de Cocultura , Dieta Hiperlipídica , Modelos Animais de Doenças , Hialuronan Sintases/genética , Proteínas Inibidoras de Diferenciação/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Paniculite/genética , Paniculite/imunologia , Fenótipo , Transdução de Sinais , Regulação para Cima
4.
Arterioscler Thromb Vasc Biol ; 36(4): 682-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868208

RESUMO

OBJECTIVE: Little is known about the role(s) B cells play in obesity-induced metabolic dysfunction. This study used a mouse with B-cell-specific deletion of Id3 (Id3(Bcell KO)) to identify B-cell functions involved in the metabolic consequences of obesity. APPROACH AND RESULTS: Diet-induced obese Id3(Bcell KO) mice demonstrated attenuated inflammation and insulin resistance in visceral adipose tissue (VAT), and improved systemic glucose tolerance. VAT in Id3(Bcell KO) mice had increased B-1b B cells and elevated IgM natural antibodies to oxidation-specific epitopes. B-1b B cells reduced cytokine production in VAT M1 macrophages, and adoptively transferred B-1b B cells trafficked to VAT and produced natural antibodies for the duration of 13-week studies. B-1b B cells null for Id3 demonstrated increased proliferation, established larger populations in Rag1(-/-) VAT, and attenuated diet-induced glucose intolerance and VAT insulin resistance in Rag1(-/-) hosts. However, transfer of B-1b B cells unable to secrete IgM had no effect on glucose tolerance. In an obese human population, results provided the first evidence that B-1 cells are enriched in human VAT and IgM antibodies to oxidation-specific epitopes inversely correlated with inflammation and insulin resistance. CONCLUSIONS: NAb-producing B-1b B cells are increased in Id3(Bcell KO) mice and attenuate adipose tissue inflammation and glucose intolerance in diet-induced obese mice. Additional findings are the first to identify VAT as a reservoir for human B-1 cells and to link anti-inflammatory IgM antibodies with reduced inflammation and improved metabolic phenotype in obese humans.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Intolerância à Glucose/prevenção & controle , Cadeias mu de Imunoglobulina/metabolismo , Inflamação/prevenção & controle , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Obesidade/complicações , Transferência Adotiva , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/transplante , Biomarcadores/sangue , Glicemia/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Genótipo , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Intolerância à Glucose/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/imunologia , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , Obesidade/imunologia , Fenótipo , Fatores de Tempo , Técnicas de Cultura de Tecidos
5.
Mol Metab ; 4(11): 779-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26629403

RESUMO

OBJECTIVE: Macrophages are important producers of obesity-induced MCP-1; however, initial obesity-induced increases in MCP-1 production precede M1 macrophage accumulation in visceral adipose tissue (VAT). The initial cellular source of obesity-induced MCP-1 in vivo is currently unknown. Preliminary reports based on in vitro studies of preadipocyte cell lines and adherent stroma-vascular fraction cells suggest that resident stromal cells express MCP-1. In the past several years, elegant methods of identifying adipocyte progenitor cells (AdPCs) have become available, making it possible to study these cells in vivo. We have previously published that global deletion of transcription factor Inhibitor of Differentiation 3 (Id3) attenuates high fat diet-induced obesity, but it is unclear if Id3 plays a role in diet-induced MCP-1 production. We sought to determine the initial cellular source of MCP-1 and identify molecular regulators mediating MCP-1 production. METHODS: Id3 (+/+) and Id3 (-/-) mice were fed either a standard chow or HFD for varying lengths of time. Flow cytometry, semi-quantitative real-time PCR, ELISAs and adoptive transfers were used to assess the importance of AdPCs during diet-induced obesity. Flow cytometry was also performed on a cohort of 14 patients undergoing bariatric surgery. RESULTS: Flow cytometry identified committed CD45(-)CD31 (-) Ter119(-)CD29(+)CD34(+)Sca-1(+)CD24(-) adipocyte progenitor cells as producers of high levels of MCP-1 in VAT. High-fat diet increased AdPC numbers, an effect dependent on Id3. Loss of Id3 increased p21(Cip1) levels and attenuated AdPC proliferation, resulting in reduced MCP-1 and M1 macrophage accumulation in VAT, compared to Id3 (+/+) littermate controls. AdPC rescue by adoptive transfer of 50,000 Id3 (+/+) AdPCs into Id3 (-/-) recipient mice increased MCP-1 levels and M1 macrophage number in VAT. Additionally, flow cytometry identified MCP-1-producing CD45(-)CD31(-)CD34(+)CD44(+)CD90(+) AdPCs in human omental and subcutaneous adipose tissue, with a higher percentage in omental adipose. Furthermore, high surface expression of CD44 marked abundant MCP-1 producers, only in visceral adipose tissue. CONCLUSIONS: This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21(Cip1) expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.

6.
Arterioscler Thromb Vasc Biol ; 33(12): 2771-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115031

RESUMO

OBJECTIVE: Natural immunity is emerging as an important mediator of protection from atherogenesis. Natural IgM antibodies that recognize oxidation-specific epitopes on low-density lipoprotein or phospholipids and the B-1a B cells that produce them attenuate atherosclerosis. We previously demonstrated that Apoe(-/-) mice globally deficient in the helix-loop-helix protein inhibitor of differentiation 3 (Id3) develop early diet-induced atherosclerosis. Furthermore, B cell-mediated attenuation of atherosclerosis in B cell-deficient mice was dependent on Id3. Here, we sought to determine whether Id3 regulates B-1a B cells and the natural antibodies that they produce and identify mechanisms mediating these effects. APPROACH AND RESULTS: Mice lacking Id3 had significantly fewer B-1a B cells in the spleen and peritoneal cavity and reduced serum levels of the natural antibody E06. B cell-specific deletion of Id3 revealed that this effect was not because of the loss of Id3 in B cells. Interleukin (IL)-33 induced abundant, Id3-dependent IL-5 production in the recently identified innate lymphoid cell, the natural helper (NH) cell, but not Th2 or mast cells. In addition, delivery of IL-5 to Id3-deficient mice restored B-1a B cell proliferation. B-1a B cells were present in aortic samples also containing NH cells. Aortic NH cells produced IL-5, a B-1a B cell mitogen in response to IL-33 stimulation. CONCLUSIONS: These studies are the first to identify NH and B-1a B cells in the aorta and provide evidence that Id3 is a key regulator of NH cell IL-5 production and B-1a B cell homeostasis.


Assuntos
Aorta/imunologia , Doenças da Aorta/imunologia , Aterosclerose/imunologia , Subpopulações de Linfócitos B/imunologia , Proliferação de Células , Imunidade Inata , Proteínas Inibidoras de Diferenciação/metabolismo , Interleucina-5/metabolismo , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Doenças da Aorta/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Interleucina-33 , Interleucina-5/genética , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Transfecção
7.
Arterioscler Thromb Vasc Biol ; 32(2): 317-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075252

RESUMO

OBJECTIVE: Inhibitor of differentiation-3 (Id3) has been implicated in promoting angiogenesis, a key determinant of high-fat diet (HFD)-induced visceral adiposity. Yet the role of Id3 in HFD-induced angiogenesis and visceral adipose expansion is unknown. METHODS AND RESULTS: Id3(-/-) mice demonstrated a significant attenuation of HFD-induced visceral fat depot expansion compared to wild type littermate controls. Importantly, unlike other Id proteins, loss of Id3 did not affect adipose depot size in young mice fed chow diet or differentiation of adipocytes in vitro or in vivo. Contrast enhanced ultrasound revealed a significant attenuation of visceral fat microvascular blood volume in HFD-fed mice null for Id3 compared to wild type controls. HFD induced Id3 and VEGFA expression in the visceral stromal vascular fraction and Id3(-/-) mice had significantly lower levels of VEGFA protein in visceral adipose tissue compared to wild type. Furthermore, HFD-induced VEGFA expression in visceral adipose tissue was completely abolished by loss of Id3. Consistent with this effect, Id3 abolished E12-mediated repression of VEGFA promoter activity. CONCLUSIONS: Results identify Id3 as an important regulator of HFD-induced visceral adipose VEGFA expression, microvascular blood volume, and depot expansion. Inhibition of Id3 may have potential as a therapeutic strategy to limit visceral adiposity.


Assuntos
Adiposidade/fisiologia , Gorduras na Dieta/farmacologia , Proteínas Inibidoras de Diferenciação/metabolismo , Gordura Intra-Abdominal/metabolismo , Adipócitos/patologia , Animais , Volume Sanguíneo/fisiologia , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Gordura Intra-Abdominal/irrigação sanguínea , Gordura Intra-Abdominal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA