Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Biosci (Landmark Ed) ; 28(11): 296, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38062840

RESUMO

BACKGROUND: Exposure to low dose rate (LDR) radiation may accelerate aging processes. Previously, we identified numerous LDR-induced pathways involved in oxidative stress (OS) and antioxidant systems, suggesting that these pathways protect against premature senescence (PS). This study aimed to investigate if there are differences between young replicative senescent (RS) and PS cells considering DNA repair kinetics, OS, and DNA damage localized in the telomeres. METHODS: We established PS cells by culturing and passaging young primary fibroblasts exposed to LDR. Then, RS cells were established by culturing and passaging young fibroblasts until they stopped proliferating. Senescence was characterized by analyzing telomere length and senescence-associated ß-galactosidase (SA-ß-gal) staining. DNA damage and repair were evaluated with γH2AX foci formation; telomere identification was carried out using the fluorescence in situ hybridization (FISH) probe; and oxidative stress was assessed by measuring 8-oxo-dG in the medium. RESULTS: The data indicate the following: young cells have a better ability to cope with LDR-induced oxidative stress; RS and PS have higher steady-state levels of DNA damage; RS have slower DNA repair kinetics; and PS/RS have elevated levels of telomeric DNA damage. CONCLUSION: Our main conclusion is that PS and RS differ regarding DNA repair kinetics and SA-ß-gal levels.


Assuntos
Senescência Celular , Estresse Oxidativo , Humanos , Senescência Celular/genética , Hibridização in Situ Fluorescente , Dano ao DNA , Telômero/genética , Fibroblastos/metabolismo , Reparo do DNA , Radiação Ionizante
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176123

RESUMO

The Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure. The average whole-body dose, the dose to the target organ, and the dose to some important out-of-field organs will be estimated. State-of-the-art analytical methods will be used to assess the levels of a set of known biomarkers and also explore high-resolution approaches of proteomics and miRNA transcriptomes to provide an integrated assessment. By using bioinformatics and systems biology, biological pathways and novel pathways involved in the response to IR exposure will be deciphered.


Assuntos
Cardiologia , Prótons , Criança , Humanos , Estudos Longitudinais , Doses de Radiação , Fótons/uso terapêutico
3.
PLoS One ; 17(3): e0265281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286349

RESUMO

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Assuntos
Senescência Celular , Biologia de Sistemas , Células Cultivadas , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Radiobiologia
4.
Cancers (Basel) ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235817

RESUMO

Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depend on the patient's radiosensitivity. Currently, there is no assay available that can reliably predict the individual's response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls.. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual's risk of experiencing radiation-induced toxicity.

5.
Int J Radiat Biol ; 95(7): 841-850, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30831044

RESUMO

Purpose: Radiation biology is a branch of the radiation research field which focuses on studying radiation effects in cells and organisms. Radiation can be used in biological investigations for two, mutually non-exclusive reasons: (1) to study biological processes by perturbing their functioning (qualitative approach) and (2) to assess consequences of radiation-induced damage (quantitative approach). While the former approach has a basic research character, the latter has an applied character that is driven by needs of medical applications and radiological protection. Radiation protection biology is defined in the sense of the second approach. The aim of the article is to provide a historical review of how radiation protection biology developed and how it influences radiological protection. Conclusions: While radiobiological investigations started immediately after the discovery of X-rays, the qualitative approach dominated until the end of World War II. After 1945, the nuclear weapons race and nuclear energy programs initiated quantitative radiobiological research. Radiation protection biology does not provide results from which radiation risks can be directly derived. Rather, it provides data that is necessary for understanding the nature of risks. Most recent years have seen, especially in Europe, a growing interest in coordinated studies on the effects of low radiation doses.


Assuntos
Proteção Radiológica/história , Proteção Radiológica/métodos , Radiobiologia/história , Radiobiologia/tendências , Radioterapia/história , Radioterapia/tendências , Animais , Europa (Continente) , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Armas Nucleares , Doses de Radiação , Lesões por Radiação , Pele/efeitos da radiação
6.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904138

RESUMO

Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material.


Assuntos
Exposição à Radiação/efeitos adversos , Radiação Ionizante , Humanos
7.
Radiat Res ; 185(3): 299-312, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26934482

RESUMO

It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation.


Assuntos
Fibroblastos/efeitos da radiação , Proteoma/genética , Radiação Ionizante , Células-Tronco/efeitos da radiação , Linhagem Celular , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Humanos , Transferência Linear de Energia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/efeitos da radiação , Proteoma/efeitos da radiação , Proteômica , Tolerância a Radiação/genética , Células-Tronco/metabolismo
8.
Radiat Environ Biophys ; 55(1): 95-102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581877

RESUMO

The mechanisms of interference of a model tumour promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) with radiation-induced apoptosis in human peripheral lymphocytes have been investigated. The cells were treated with TPA under various conditions and thereafter exposed to a single lethal dose of gamma radiation. Morphological and biochemical changes characteristic of apoptosis were followed up to 72 h of post-irradiation time. Acute exposure to low concentration of TPA resulted in delay in the onset of radiation-induced apoptosis (determined as morphological changes and rate of mitochondrial demise) by 24-48 h as compared to the irradiated, sham TPA-treated cells. The time course of this delay correlated well with confinement of the p53 protein to the cytoplasm and increase in bcl-2 levels at the nuclear periphery of irradiated cells. Our results indicate that confinement of p53 in the cytoplasm is one of the potential mechanisms by which TPA interferes with the process of radiation-induced apoptosis in human lymphocytes.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Raios gama/efeitos adversos , Acetato de Tetradecanoilforbol/farmacologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2 , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
9.
Mutat Res ; 776: 128-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26255944

RESUMO

Radiation therapy is a cornerstone of modern cancer treatment. Understanding the mechanisms behind normal tissue sensitivity is essential in order to minimize adverse side effects and yet to prevent local cancer reoccurrence. The aim of this study was to identify biomarkers of radiation sensitivity to enable personalized cancer treatment. To investigate the mechanisms behind radiation sensitivity a pilot study was made where eight radiation-sensitive and nine normo-sensitive patients were selected from a cohort of 2914 breast cancer patients, based on acute tissue reactions after radiation therapy. Whole blood was sampled and irradiated in vitro with 0, 1, or 150 mGy followed by 3 h incubation at 37°C. The leukocytes of the two groups were isolated, pooled and protein expression profiles were investigated using isotope-coded protein labeling method (ICPL). First, leukocytes from the in vitro irradiated whole blood from normo-sensitive and extremely sensitive patients were compared to the non-irradiated controls. To validate this first study a second ICPL analysis comparing only the non-irradiated samples was conducted. Both approaches showed unique proteomic signatures separating the two groups at the basal level and after doses of 1 and 150 mGy. Pathway analyses of both proteomic approaches suggest that oxidative stress response, coagulation properties and acute phase response are hallmarks of radiation sensitivity supporting our previous study on oxidative stress response. This investigation provides unique characteristics of radiation sensitivity essential for individualized radiation therapy.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Proteínas de Neoplasias/sangue , Estresse Oxidativo/efeitos da radiação , Proteoma/metabolismo , Tolerância a Radiação , Neoplasias da Mama/sangue , Neoplasias da Mama/radioterapia , Feminino , Humanos , Pessoa de Meia-Idade , Proteômica , Estudos Retrospectivos
10.
PLoS One ; 10(7): e0133658, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208275

RESUMO

Tardigrades are highly tolerant to desiccation and ionizing radiation but the mechanisms of this tolerance are not well understood. In this paper, we report studies on dose responses of adults and eggs of the tardigrade Hypsibius dujardini exposed to gamma radiation. In adults the LD50/48h for survival was estimated at ~ 4200 Gy, and doses higher than 100 Gy reduced both fertility and hatchability of laid eggs drastically. We also evaluated the effect of radiation (doses 50 Gy, 200 Gy, 500 Gy) on eggs in the early and late embryonic stage of development, and observed a reduced hatchability in the early stage, while no effect was found in the late stage of development. Survival of juveniles from irradiated eggs was highly affected by a 500 Gy dose, both in the early and the late stage. Juveniles hatched from eggs irradiated at 50 Gy and 200 Gy developed into adults and produced offspring, but their fertility was reduced compared to the controls. Finally we measured the effect of low temperature during irradiation at 4000 Gy and 4500 Gy on survival in adult tardigrades, and observed a slight delay in the expressed mortality when tardigrades were irradiated on ice. Since H. dujardini is a freshwater tardigrade with lower tolerance to desiccation compared to limno-terrestrial tardigrades, the high radiation tolerance in adults, similar to limno-terrestrial tardigrades, is unexpected and seems to challenge the idea that desiccation and radiation tolerance rely on the same molecular mechanisms. We suggest that the higher radiation tolerance in adults and late stage embryos of H. dujardini (and in other studied tardigrades) compared to early stage embryos may partly be due to limited mitotic activity, since tardigrades have a low degree of somatic cell division (eutely), and dividing cells are known to be more sensitive to radiation.


Assuntos
Raios gama , Tolerância a Radiação , Tardígrados/efeitos da radiação , Animais , Proliferação de Células , Relação Dose-Resposta à Radiação , Fertilidade/efeitos da radiação , Reprodução/efeitos da radiação , Temperatura
11.
Int J Radiat Biol ; 90(5): 401-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24527670

RESUMO

PURPOSE: Primary fibroblasts are not suitable for in vitro macrocolony assay due to their inability to form distinct colonies. Here we present a modification of agarose overlay that yielded extensive improvement in their colony formation and assessment of radiosensitivity. MATERIALS AND METHODS: Macrocolony formation was assessed in primary human fibroblasts VH10 and HDFn with or without overlay using 0.5% agarose in growth medium at 24 h post-seeding. Malignant human cell lines (A549, U87) and transformed non-malignant fibroblasts (AA8 hamster, MRC5 human) were used for comparison. RESULTS: Agarose overlay caused significant improvement marked by early appearance (one week) of distinct colonies with high cell density and multifold higher plating efficiency than conventional macrocolony assay in VH10 and HDFn human fibroblasts. Compared to conventional assay or feeder cell supplementation, agarose overlay resulted in broader cell morphology due to improved adherence, and yielded more compact colonies. Gamma-radiation dose-response survival curves could be successfully generated for both fibroblast cell lines using this method, which yielded no such effects in the transformed/malignant cell lines tested. CONCLUSION: This easy and inexpensive 'agarose overlay technique' significantly and selectively improves the fibroblast plating efficiency, thus considerably reducing time and effort to greatly benefit the survival studies on primary fibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Tolerância a Radiação , Sefarose , Animais , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Cricetinae , Cricetulus , Humanos
12.
Radiat Environ Biophys ; 53(2): 417-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549366

RESUMO

The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.0 mGy/h (chronic exposure) as well as 24 Gy/h (acute exposure). Cell growth, frequency of thymidine kinase mutants, and of chromosomal aberrations in painted chromosomes 2, 8, and 14 were analysed. A decline in cell growth and an increase in unstable-type chromosomal aberrations with increasing dose rate were observed in both cell lines. A dose rate effect was not seen on mutations or stable-type chromosomal aberrations in any of the two cell lines. Reduction in the hMTH1 protein does not influence the sensitivity of TK6 cells to gamma radiation. This result fits well with data of others generated with the same cell line.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Raios gama/efeitos adversos , Mutação/efeitos da radiação , Monoéster Fosfórico Hidrolases/genética , Doses de Radiação , Transfecção , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Clonais/citologia , Células Clonais/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos
13.
Proteomes ; 2(3): 341-362, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28250385

RESUMO

The risks of non-cancerous diseases associated with exposure to low doses of radiation are at present not validated by epidemiological data, and pose a great challenge to the scientific community of radiation protection research. Here, we show that premature senescence is induced in human fibroblasts when exposed to chronic low dose rate (LDR) exposure (5 or 15 mGy/h) of gamma rays from a 137Cs source. Using a proteomic approach we determined differentially expressed proteins in cells after chronic LDR radiation compared to control cells. We identified numerous proteins involved in protection against oxidative stress, suggesting that these pathways protect against premature senescence. In order to further study the role of oxidative stress for radiation induced premature senescence, we also used human fibroblasts, isolated from a patient with a congenital deficiency in glutathione synthetase (GS). We found that these GS deficient cells entered premature senescence after a significantly shorter time of chronic LDR exposure as compared to the GS proficient cells. In conclusion, we show that chronic LDR exposure induces premature senescence in human fibroblasts, and propose that a stress induced increase in reactive oxygen species (ROS) is mechanistically involved.

14.
Mutat Res ; 751-752: 8-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24144844

RESUMO

Ultraviolet radiation is a highly mutagenic agent that damages the DNA by the formation of mutagenic photoproducts at dipyrimidine sites and by oxidative DNA damages via reactive oxygen species (ROS). ROS can also give rise to mutations via oxidation of dNTPs in the nucleotide pool, e.g. 8-oxo-dGTP and 2-OH-dATP and subsequent incorporation during DNA replication. Here we show that expression of human MutT homolog 1 (hMTH1) which sanitizes the nucleotide pool by dephosphorylating oxidized dNTPs, protects against mutagenesis induced by long wave UVA light and by UVB light but not by short wave UVC light. Mutational spectra analyses of UVA-induced mutations at the endogenous Thymidine kinase gene in human lymphoblastoid cells revealed that hMTH1 mainly protects cells from transitions at GC and AT base pairs.


Assuntos
Enzimas Reparadoras do DNA/genética , Mutação/efeitos da radiação , Monoéster Fosfórico Hidrolases/genética , Raios Ultravioleta , Pareamento de Bases/efeitos da radiação , Linhagem Celular , Enzimas Reparadoras do DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mutagênese/efeitos da radiação , Taxa de Mutação , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Timidina Quinase/genética
15.
PLoS One ; 8(9): e72098, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039737

RESUMO

Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies have documented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differential effects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effect of gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from the eutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, and late stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses, while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival with higher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might have taken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and late stage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that the tolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this pattern are unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of response mechanisms to damaged DNA in the course of development.


Assuntos
Embrião não Mamífero/efeitos da radiação , Raios gama , Tardígrados/efeitos da radiação , Animais , Óvulo/efeitos da radiação , Tolerância a Radiação , Tardígrados/citologia , Tardígrados/embriologia
16.
PLoS One ; 8(8): e70024, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936371

RESUMO

The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal) and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.


Assuntos
Senescência Celular/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Proteômica , Fatores de Tempo
17.
Mutat Res ; 756(1-2): 21-9, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23811167

RESUMO

The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Distúrbios no Reparo do DNA/genética , Raios gama/efeitos adversos , Produtos de Decaimento de Radônio/efeitos adversos , Reparo de DNA por Recombinação/genética , Animais , Células CHO , Sobrevivência Celular , Radioisótopos de Césio , Galinhas , Ensaio de Unidades Formadoras de Colônias , Cricetinae , Cricetulus , Testes para Micronúcleos
18.
Mutat Res ; 756(1-2): 152-7, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23652022

RESUMO

The aim of the study was to compare the radiation-induced oxidative stress response in blood samples from breast cancer patients that developed severe acute skin reactions during the radiotherapy, with the response in blood samples from patients with no side effects. Peripheral blood was collected from 12 breast cancer patients showing no early skin reactions after radiotherapy (RTOG grade 0) and from 14 breast cancer patients who developed acute severe skin reactions (RTOG grade 3-4). Whole blood was irradiated with 0, 5 and 2000mGy γ-radiation and serum was isolated. The biomarker for oxidative stress, 8-oxo-dG, was analyzed in the serum by a modified ELISA. While a significant radiation-induced increase of serum 8-oxo-dG levels was observed in serum of the RTOG 0 patients, no increase was seen in serum of the RTOG 3-4 patients. The radiation induced increase in serum 8-oxo-dG levels after 5mGy did not differ significantly from the increase observed for 2000mGy in the RTOG 3-4 cohort, thus no dose response relation was observed. A receiver operating characteristic (ROC) value of 0.97 was obtained from the radiation-induced increase in 8-oxo-dG indicating that the assay could be used to identify patients with severe acute adverse reactions to radiotherapy. The results show that samples of whole blood from patients, classified as highly radiosensitive (RTOG 3-4) based on their skin reactions to radiotherapy, differ significantly in their oxidative stress response to ionizing radiation compared to samples of whole blood from patients with no skin reactions (RTOG 0). Extracellular 8-oxo-dG is primarily a biomarker of nucleotide damage and the results indicate that the patients with severe acute skin reactions differ in their cellular response to ionizing radiation at the level of induction of oxidative stress or at the level of repair or both.


Assuntos
Células Sanguíneas/efeitos da radiação , Neoplasias da Mama/patologia , Desoxiguanosina/análogos & derivados , Raios gama/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Dermatopatias/sangue , Dermatopatias/etiologia , 8-Hidroxi-2'-Desoxiguanosina , Doença Aguda , Adulto , Idoso , Biomarcadores/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/complicações , Neoplasias da Mama/radioterapia , Estudos de Coortes , Desoxiguanosina/sangue , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Tolerância a Radiação/efeitos da radiação , Dermatopatias/diagnóstico
19.
Proteomics ; 13(7): 1096-107, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349028

RESUMO

Chronic low-dose ionizing radiation induces cardiovascular disease in human populations but the mechanism is largely unknown. We suggested that chronic radiation exposure may induce endothelial cell senescence that is associated with vascular damage in vivo. We investigated whether chronic radiation exposure is causing a change in the onset of senescence in endothelial cells in vitro. Indeed, when exposed to continuous low-dose rate gamma radiation (4.1 mGy/h), primary human umbilical vein endothelial cells (HUVECs) initiated senescence much earlier than the nonirradiated control cells. We investigated the changes in the protein expression of HUVECs before and during the onset of radiation-induced senescence. Cellular proteins were quantified using isotope-coded protein label technology after 1, 3, and 6 weeks of radiation exposure. Several senescence-related biological pathways were influenced by radiation, including cytoskeletal organization, cell-cell communication and adhesion, and inflammation. Immunoblot analysis showed an activation of the p53/p21 pathway corresponding to the progressing senescence. Our data suggest that chronic radiation-induced DNA damage and oxidative stress result in induction of p53/p21 pathway that inhibits the replicative potential of HUVECs and leads to premature senescence. This study contributes to the understanding of the increased risk of cardiovascular diseases seen in populations exposed to chronic low-dose irradiation.


Assuntos
Senescência Celular/efeitos da radiação , Raios gama , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Proteômica/métodos , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Immunoblotting , Redes e Vias Metabólicas/efeitos da radiação , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
20.
Mutat Res ; 751(2): 258-286, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22677531

RESUMO

Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin(-1)) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.


Assuntos
Biomarcadores , Estudos Epidemiológicos , Radiação Ionizante , Células Cultivadas , Aberrações Cromossômicas , Dano ao DNA , Epigênese Genética , Humanos , Metabolômica , Epidemiologia Molecular , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA