Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 26(30): 305403, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25008894

RESUMO

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm( - 1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160 K. The mode frequencies of two first-order Raman modes B1g and Eg, both involving the displacement of Fe atoms, show a sharp increase below Tsm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below Tsm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm( - 1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe(2+). The splitting between xz and yz d-orbital levels is shown to be ~25 meV, which increases as temperature decreases below Tsm. A broad Raman band observed at ~3200 cm( - 1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.

2.
Phys Rev Lett ; 109(7): 077001, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006394

RESUMO

The role of Co substitution in the low-energy electronic structure of Ca(Fe(0.944)Co(0.056))(2)As(2) is investigated by resonant photoemission spectroscopy and density-functional theory. The Co 3d state center of mass is observed at 250 meV higher binding energy than that of Fe, indicating that Co possesses one extra valence electron and that Fe and Co are in the same oxidation state. Yet, significant Co character is detected for the Bloch wave functions at the chemical potential, revealing that the Co 3d electrons are part of the Fermi sea determining the Fermi surface. This establishes the complex role of Co substitution in CaFe(2)As(2) and the inadequacy of a rigid-band shift description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA