Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585873

RESUMO

Lysosomal storage diseases (LSDs) comprised ~50 monogenic diseases characterized by the accumulation of cellular material in lysosomes and associated defects in lysosomal function, but systematic molecular phenotyping is lacking. Here, we develop a nanoflow-based multi-omic single-shot technology (nMOST) workflow allowing simultaneously quantify HeLa cell proteomes and lipidomes from more than two dozen LSD mutants, revealing diverse molecular phenotypes. Defects in delivery of ferritin and its autophagic receptor NCOA4 to lysosomes (ferritinophagy) were pronounced in NPC2-/- cells, which correlated with increased lyso-phosphatidylcholine species and multi-lamellar membrane structures visualized by cryo-electron-tomography. Ferritinophagy defects correlated with loss of mitochondrial cristae, MICOS-complex components, and electron transport chain complexes rich in iron-sulfur cluster proteins. Strikingly, mitochondrial defects were alleviated when iron was provided through the transferrin system. This resource reveals how defects in lysosomal function can impact mitochondrial homeostasis in trans and highlights nMOST as a discovery tool for illuminating molecular phenotypes across LSDs.

2.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
3.
Proc Natl Acad Sci U S A ; 121(6): e2317453121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289956

RESUMO

The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.


Assuntos
Escherichia coli , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação da Fase de Leitura/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Códon/metabolismo
4.
Neuropharmacology ; 238: 109663, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429543

RESUMO

Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces sex-specific social alterations indexed via decreases of social investigation and/or social preference in rats. The prelimbic cortex (PrL) regulates social interaction, and alterations within the PrL resulting from AIE may contribute to social alterations. The current study sought to determine whether AIE-induced PrL dysfunction underlies decreases in social interaction evident in adulthood. We first examined social interaction-induced neuronal activation of the PrL and several other regions of interest (ROIs) implicated in social interaction. Adolescent male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express ß-galactosidase (ß-gal) as a proxy for Fos, activated cells that express of ß-gal can be inactivated by Daun02. In most ROIs, expression of ß-gal was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, decreased social interaction-induced ß-gal expression in AIE-exposed rats relative to controls was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and was subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by social interaction reduced social investigation in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social investigation and suggest an AIE-associated dysfunction of the PrL that may contribute to reduced social investigation following adolescent ethanol exposure.


Assuntos
Etanol , Neurônios , Ratos , Masculino , Feminino , Animais , Etanol/farmacologia
5.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993252

RESUMO

Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces a sex-specific social impairment in rats. The prelimbic cortex (PrL) regulates social behavior, and alterations within the PrL resulting from AIE may contribute to social impairments. The current study sought to determine whether AIE-induced PrL dysfunction underlies social deficits in adulthood. We first examined social stimulus-induced neuronal activation of the PrL and several other regions of interest implicated in social behavior. Male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express ß-galactosidase (ß-gal) as a proxy for cFos, activated cells that express of ß-gal can be inactivated by Daun02. ß-gal expression in most ROIs was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, differences in social stimulus-induced ß-gal expression between controls and AIE-exposed rats was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and were subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by a social stimulus led to a reduction of social behavior in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social behavior and suggest an AIE-associated dysfunction of the PrL may contribute to social deficits following adolescent ethanol exposure.

6.
Autophagy ; 19(6): 1711-1732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469690

RESUMO

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Assuntos
Doença de Parkinson , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Ubiquitina/metabolismo
7.
Nat Commun ; 13(1): 5924, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207292

RESUMO

Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Gangliosidoses , Progranulinas/metabolismo , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Gangliosídeos/metabolismo , Gangliosidoses/metabolismo , Granulinas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Fosfatos/metabolismo , Progranulinas/genética
8.
Ann R Coll Surg Engl ; 104(5): e133-e136, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34939850

RESUMO

Although immunoglobulin G4-related disease (IgG4-RD) has a predilection for the head and neck region, laryngeal pathology is rare. We report a case of supraglottic stenosis due to IgG4-RD together with a novel treatment strategy of employing a laryngeal stent. A 69-year-old man was referred with longstanding dyspnoea and worsening inspiratory stridor. Despite two supraglottic dilations over a 12-month period, his stenosis recurred and symptoms persisted. Serum investigations revealed elevated IgG4 levels (2.390g/l), with IgG4 infiltrate in laryngeal biopsies. The patient underwent endoscopic balloon dilation, intralesional Depo-Medrone® injection, CO2 laser therapy and insertion of a laryngeal stent to prevent re-stenosis. Rituximab and prednisolone were commenced postoperatively and the stent was removed at 6weeks. No stenosis recurrence was visualised over a further 12-month follow-up period. Sixteen cases of laryngeal lesions with confirmed IgG4 infiltrate in biopsies have been reported in the worldwide literature to date. Based on a literature review and our experience, we recommend that similar laryngeal pathologies undergo early IgG4 serological testing and biopsy immunohistochemistry. Prompt diagnostic confirmation may prevent unnecessary surgical interventions and optimise immunosuppression. Furthermore, the use of a laryngeal stent following laryngeal surgery may help reduce stenotic recurrence and promote healing.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Laringe , Idoso , Constrição Patológica/complicações , Humanos , Imunoglobulina G , Doença Relacionada a Imunoglobulina G4/complicações , Doença Relacionada a Imunoglobulina G4/diagnóstico , Doença Relacionada a Imunoglobulina G4/patologia , Masculino , Rituximab/uso terapêutico
9.
Mol Cell ; 81(24): 5082-5098.e11, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34699746

RESUMO

Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Células-Tronco Neurais/enzimologia , Neurogênese , Neurônios/enzimologia , Proteoma , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteostase , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/genética
10.
Zoology (Jena) ; 146: 125923, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901836

RESUMO

Silks produced by webspinners (Order Embioptera) interact with water by transforming from fiber to film, which then becomes slippery and capable of shedding water. We chose to explore this mechanism by analyzing and comparing the silk protein transcripts of two species with overlapping distributions in Trinidad but from different taxonomic families. The transcript of one, Antipaluria urichi (Clothodidae), was partially characterized in 2009 providing a control for our methods to characterize a second species: Pararhagadochir trinitatis (Scelembiidae), a family that adds to the taxon sampling for this little known order of insects. Previous reports showed that embiopteran silk protein (dubbed Efibroin) consists of a protein core of repetitive motifs largely composed of glycine (Gly), serine (Ser), and alanine (Ala) and a highly conserved C-terminal region. Based on mRNA extracted from silk glands, Next Generation sequencing, and de novo assembly, P. trinitatis silk can be characterized by repetitive motifs of Gly-Ser followed periodically by Gly-Asparagine (Asn-an unusual amino acid for Efibroins) and by a lack of Ala which is otherwise common in Efibroins. The putative N-terminal domain, composed mostly of polar, charged and bulky amino acids, is ten amino acids long with cysteine in the 10th position-a feature likely related to stabilization of the silk fibers. The 29 amino acids of the C-terminus for P. trinitatis silk closely resemble that of other Efibroin sequences, which show 74% shared identity on average. Examination of hydropathicity of Efibroins of both P. trinitatis and An. urichi revealed that these proteins are largely hydrophilic despite having a thin lipid coating on each nano-fiber. We deduced that the hydrophilic quality differs for the two species: due to Ser and Asn for P. trinitatis silk and to previously undetected spacers in An. urichi silk. Spacers are known from some spider and silkworm silks but this is the first report of such for Embioptera. Analysis of hydropathicity revealed the largely hydrophilic quality of these silks and this feature likely explains why water causes the transformation from fiber to film. We compared spun silk to the transcript and detected not insignificant differences between the two measurements implying that as yet undetermined post-translational modifications of their silk may occur. In addition, we found evidence for codon bias in the nucleotides of the putative silk transcript for P. trinitatis, a feature also known for other embiopteran silk genes.


Assuntos
Insetos/fisiologia , Seda/química , Sequência de Aminoácidos , Animais , Ecossistema , Seda/fisiologia , Especificidade da Espécie , Trinidad e Tobago
11.
Science ; 369(6511)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973005

RESUMO

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Retículo Endoplasmático/enzimologia , Membranas Mitocondriais/enzimologia , ATPases do Tipo-P/química , Proteínas de Saccharomyces cerevisiae/química , Microscopia Crioeletrônica , Células HeLa , Humanos , ATPases do Tipo-P/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência
12.
J Hosp Infect ; 106(2): 335-342, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712388

RESUMO

BACKGROUND: A common complication of central venous access devices (CVADs) is catheter-associated bloodstream infection (CABSI). We previously demonstrated that insertion of CVADs on the right side was associated with increased risk of CABSI, and hypothesized that this related to the predominance of right-handedness in the patient population, resulting in greater movement and bacterial contamination. AIM: To perform a prospective randomized, controlled, non-blinded study to determine whether the side of CVAD insertion influenced the incidence of CABSI. METHODS: Adult cancer patients were randomly allocated to either dominant or non-dominant side CVAD insertion. The primary endpoint of the study was the number of line-days until CABSI, determined in a blinded fashion by two assessors. FINDINGS: In all, 640 CVADs were randomized to dominant (N = 322) or non-dominant (N = 318) side of insertion, 60% had haematological malignancies, and 40% solid tumours. CVADs were a peripherally inserted central catheter line (67%), tunnelled CVAD (23%), and non-tunnelled CVAD (10%). Twenty-two percent of CVADs were complicated by CABSI. The rate of CABSI per 1000 line-days was 3.49 vs 3.66 in the non-dominant vs dominant group (hazard ratio (HR): 0.91; 95% confidence interval (CI): 0.65-1.28). By multivariable analysis, the rate of CABSI was increased by: use of tunnelled CVADs compared to peripherally inserted central venous catheter lines (HR: 2.05; 95% CI: 1.45-2.91); having a haematological malignancy compared to non-gastrointestinal solid tumours (5.55; 2.47-12.5); but not dominant compared to non-dominant side of CVAD (0.97; 0.69-1.36). CONCLUSION: CABSI in adult patients with cancer was not impacted by whether CVAD insertion was on the dominant or non-dominant side.


Assuntos
Infecções Bacterianas/etiologia , Infecções Relacionadas a Cateter/sangue , Cateterismo Venoso Central/efeitos adversos , Cateteres Venosos Centrais/efeitos adversos , Neoplasias/complicações , Sepse/etiologia , Adulto , Idoso , Austrália/epidemiologia , Infecções Relacionadas a Cateter/microbiologia , Cateteres Venosos Centrais/microbiologia , Contaminação de Equipamentos , Feminino , Lateralidade Funcional , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Estudos Prospectivos , Sepse/microbiologia , Centros de Atenção Terciária
13.
Sci Adv ; 5(11): eaay4624, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723608

RESUMO

The PINK1 protein kinase activates the PARK2 ubiquitin ligase to promote mitochondrial ubiquitylation and recruitment of ubiquitin-binding mitophagy receptors typified by OPTN and TAX1BP1. Here, we combine proximity biotinylation of OPTN and TAX1BP1 with CRISPR-Cas9-based screens for mitophagic flux to develop a spatial proteogenetic map of PARK2-dependent mitophagy. Proximity labeling of OPTN allowed visualization of a "mitochondrial-autophagosome synapse" upon mitochondrial depolarization. Proximity proteomics of OPTN and TAX1BP1 revealed numerous proteins at the synapse, including both PARK2 substrates and autophagy components. Parallel mitophagic flux screens identified proteins with roles in autophagy, vesicle formation and fusion, as well as PARK2 targets, many of which were also identified via proximity proteomics. One protein identified in both approaches, HK2, promotes assembly of a high-molecular weight complex of PINK1 and phosphorylation of ubiquitin in response to mitochondrial damage. This work provides a resource for understanding the spatial and molecular landscape of PARK2-dependent mitophagy.


Assuntos
Autofagossomos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Proteogenômica/métodos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Ubiquitina-Proteína Ligases/genética
14.
Cancer Cell ; 36(4): 369-384.e13, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31543463

RESUMO

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Evolução Clonal/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Genet ; 51(9): 1308-1314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406347

RESUMO

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.


Assuntos
Carcinoma Ductal Pancreático/patologia , Carcinoma/patologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/patologia , Prenilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rab de Ligação ao GTP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linhagem , Proteínas Proto-Oncogênicas p21(ras)/genética , Homologia de Sequência , Peixe-Zebra
16.
J Cell Biol ; 218(9): 2982-3001, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31320392

RESUMO

The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Linhagem Celular Tumoral , Dineínas/genética , Humanos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética
17.
Mol Cell ; 74(1): 32-44.e8, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846318

RESUMO

Excessive levels of saturated fatty acids are toxic to cells, although the basis for this lipotoxicity remains incompletely understood. Here, we analyzed the transcriptome, lipidome, and genetic interactions of human leukemia cells exposed to palmitate. Palmitate treatment increased saturated glycerolipids, accompanied by a transcriptional stress response, including upregulation of the endoplasmic reticulum (ER) stress response. A comprehensive genome-wide short hairpin RNA (shRNA) screen identified >350 genes modulating lipotoxicity. Among previously unknown genetic modifiers of lipotoxicity, depletion of RNF213, a putative ubiquitin ligase mutated in Moyamoya vascular disease, protected cells from lipotoxicity. On a broader level, integration of our comprehensive datasets revealed that changes in di-saturated glycerolipids, but not other lipid classes, are central to lipotoxicity in this model. Consistent with this, inhibition of ER-localized glycerol-3-phosphate acyltransferase activity protected from all aspects of lipotoxicity. Identification of genes modulating the response to saturated fatty acids may reveal novel therapeutic strategies for treating metabolic diseases linked to lipotoxicity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Glicerídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Palmítico/toxicidade , Aciltransferases/genética , Aciltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/genética , Regulação Enzimológica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Células K562 , Metabolismo dos Lipídeos/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
18.
J Cell Biol ; 218(2): 422-432, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30602538

RESUMO

53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function. Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination. Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCA1. Strikingly, concurrent loss of 53BP1 rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for 53BP1 in replication fork stability.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Recombinação Homóloga , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
19.
Br J Dermatol ; 180(5): 1050-1057, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30500065

RESUMO

BACKGROUND: Once-daily topical oxymetazoline cream 1·0% significantly reduced persistent facial erythema of rosacea in trials requiring live, static patient assessments. OBJECTIVES: To evaluate critically the methodology of clinical trials that require live, static patient assessments by determining whether assessment of erythema is different when reference to the baseline photograph is allowed. METHODS: In two identically designed, randomized, phase III trials, adults with persistent facial erythema of rosacea applied oxymetazoline or vehicle once daily. This phase IV study evaluated standardized digital facial photographs from the phase III trials to record ≥ 1-grade Clinician Erythema Assessment (CEA) improvement at 1, 3, 6, 9 and 12 h postdose. RESULTS: Among 835 patients (oxymetazoline n = 415, vehicle n = 420), significantly greater proportions of patients treated with oxymetazoline vs. vehicle achieved ≥ 1-grade CEA improvement. For the comparison between phase IV study results and the original phase III analysis, when reference to baseline photographs was allowed while evaluating post-treatment photographs, the results for oxymetazoline were similar to results of the phase III trials (up to 85.7%), but a significantly lower proportion of vehicle recipients achieved ≥ 1-grade CEA improvement (up to 29.7% [phase 4] vs. 52.3% [phase 3]; P<0.001). In the phase IV study, up to 80·2% of patients treated with oxymetazoline achieved at least moderate erythema improvement vs. up to 22·9% of patients treated with vehicle. The association between patients' satisfaction with facial skin redness and percentage of erythema improvement was statistically significant. CONCLUSIONS: Assessment of study photographs, with comparison to baseline, confirmed significant erythema reduction with oxymetazoline on the first day of application. Compared with the phase III trial results, significantly fewer vehicle recipients attained ≥ 1-grade CEA improvement, suggesting a mitigated vehicle effect. This methodology may improve the accuracy of clinical trials evaluating erythema severity.


Assuntos
Eritema/diagnóstico , Oximetazolina/administração & dosagem , Fotografação/normas , Rosácea/diagnóstico , Índice de Gravidade de Doença , Eritema/tratamento farmacológico , Face , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medidas de Resultados Relatados pelo Paciente , Satisfação do Paciente , Projetos de Pesquisa/normas , Rosácea/tratamento farmacológico , Pele/diagnóstico por imagem , Pele/efeitos dos fármacos , Creme para a Pele/administração & dosagem , Resultado do Tratamento
20.
Br J Dermatol ; 180(5): 1135-1149, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30367460

RESUMO

BACKGROUND: Linear morphoea (LM) is a rare connective tissue disorder characterized by a line of thickened skin and subcutaneous tissue and can also affect the underlying muscle and bone. Little is known about the disease aetiology, with treatment currently limited to immune suppression, and disease recurrence post-treatment is common. OBJECTIVES: In order to uncover new therapeutic avenues, the cell-intrinsic changes in LM fibroblasts compared with site-matched controls were characterized. METHODS: We grew fibroblasts from site-matched affected and unaffected regions from five patients with LM, we subjected them to gene expression analysis and investigation of SMAD signalling. RESULTS: Fibroblasts from LM lesions showed increased migration, proliferation, altered collagen processing, and abnormally high basal levels of phosphorylated SMAD2, thereby rendering them less responsive to transforming growth factor (TGF)-ß1 and reducing the degree of myofibroblast differentiation, which is a key component of the wound-healing and scarring process in normal skin. Conditioned media from normal fibroblasts could reverse LM-affected fibroblast migration and proliferation, suggesting that the LM phenotype is driven by an altered secretome. Gene array analysis and RNA-Seq indicated upregulation of ADAMTS8 and downregulation of FRAS1 and SOSTDC1. SOSTDC1 knock-down recapitulated the reduced TGF-ß1 responsiveness and LM fibroblast migration, while overexpression of ADAMTS8 induced myofibroblast markers. CONCLUSIONS: We demonstrate that cell-intrinsic changes in the LM fibroblast secretome lead to changes observed in the disease, and that secretome modulation could be a viable therapeutic approach in the treatment of LM.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos/metabolismo , Esclerodermia Localizada/patologia , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Animais , Biópsia , Movimento Celular/genética , Proliferação de Células/genética , Criança , Proteínas da Matriz Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Células NIH 3T3 , Cultura Primária de Células , RNA-Seq , Transdução de Sinais/genética , Pele/citologia , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA