Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(11): e18144, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37791581

RESUMO

Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Glioblastoma/patologia , Peixe-Zebra , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/uso terapêutico , Linhagem Celular Tumoral , Macrófagos/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral/genética
2.
Nat Cell Biol ; 21(9): 1102-1112, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31481792

RESUMO

The classical model of tissue renewal posits that small numbers of quiescent stem cells (SCs) give rise to proliferating transit-amplifying cells before terminal differentiation. However, many organs house pools of SCs with proliferative and differentiation potentials that diverge from this template. Resolving SC identity and organization is therefore central to understanding tissue renewal. Here, using a combination of single-cell RNA sequencing (scRNA-seq), mouse genetics and tissue injury approaches, we uncover cellular hierarchies and mechanisms that underlie the maintenance and repair of the continuously growing mouse incisor. Our results reveal that, during homeostasis, a group of actively cycling epithelial progenitors generates enamel-producing ameloblasts and adjacent layers of non-ameloblast cells. After injury, tissue repair was achieved through transient increases in progenitor-cell proliferation and through direct conversion of Notch1-expressing cells to ameloblasts. We elucidate epithelial SC identity, position and function, providing a mechanistic basis for the homeostasis and repair of a fast-turnover ectodermal appendage.


Assuntos
Ameloblastos/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Ectoderma/citologia , Incisivo/citologia , Animais , Divisão Celular/fisiologia , Células Epiteliais/citologia , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Células-Tronco/citologia
3.
Nat Cell Biol ; 18(12): 1292-1301, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27870831

RESUMO

The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.


Assuntos
Divisão Celular Assimétrica , Movimento Celular , Neovascularização Fisiológica , Animais , Polaridade Celular , Tamanho Celular , Simulação por Computador , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
Elife ; 52016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26910011

RESUMO

Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.


Assuntos
Proliferação de Células , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Receptores Notch/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Simulação por Computador , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Óptica
5.
J Pharmacol Exp Ther ; 340(3): 492-500, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22128344

RESUMO

We previously reported the discovery of a novel ribosomal S6 kinase 2 (RSK2) inhibitor, (R)-5-Methyl-1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a] indole-8-carboxylic acid [1-(3-dimethylamino-propyl)-1H-benzoimidazol-2-yl]-amide (BIX 02565), with high potency (IC(50) = 1.1 nM) targeted for the treatment of heart failure. In the present study, we report that despite nanomolar potency at the target, BIX 02565 elicits off-target binding at multiple adrenergic receptor subtypes that are important in the control of vascular tone and cardiac function. To elucidate in vivo the functional consequence of receptor binding, we characterized the cardiovascular (CV) profile of the compound in an anesthetized rat CV screen and telemetry-instrumented conscious rats. Infusion of BIX 02565 (1, 3, and 10 mg/kg) in the rat CV screen resulted in a precipitous decrease in both mean arterial pressure (MAP; to -65 ± 6 mm Hg below baseline) and heart rate (-93 ± 13 beats/min). In telemetry-instrumented rats, BIX 02565 (30, 100, and 300 mg/kg p.o. QD for 4 days) elicited concentration-dependent decreases in MAP after each dose (to -39 ± 4 mm Hg on day 4 at T(max)); analysis by Demming regression demonstrated strong correlation independent of route of administration and influence of anesthesia. Because of pronounced off-target effects of BIX 02565 on cardiovascular function, a high-throughput selectivity screen at adrenergic α(1A) and α(2A) was performed for 30 additional RSK2 inhibitors in a novel chemical series; a wide range of adrenergic binding was achieved (0-92% inhibition), allowing for differentiation within the series. Eleven lead compounds with differential binding were advanced to the rat CV screen for in vivo profiling. This led to the identification of potent RSK2 inhibitors (cellular IC(50) <0.14 nM) without relevant α(1A) and α(2A) inhibition and no adverse cardiovascular effects in vivo.


Assuntos
Azepinas/farmacologia , Benzimidazóis/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Descoberta de Drogas , Masculino , Ratos , Ratos Sprague-Dawley
6.
Nat Neurosci ; 14(7): 889-95, 2011 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685918

RESUMO

How animals maintain proper amounts of sleep yet remain flexible to changes in environmental conditions remains unknown. We found that environmental light suppressed the wake-promoting effects of dopamine in fly brains. The ten large lateral-ventral neurons (l-LNvs), a subset of clock neurons, are wake-promoting and respond to dopamine, octopamine and light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Notably, light exposure not only suppressed l-LNv responses, but also synchronized responses of neighboring l-LNvs. This regulation occurred by distinct mechanisms: light-mediated suppression of octopamine responses was regulated by the circadian clock, whereas light regulation of dopamine responses occurred by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues on the basis of the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility.


Assuntos
Relógios Circadianos/fisiologia , Dopamina/farmacologia , Ventrículos Laterais/citologia , Luz , Neurônios/fisiologia , Vigília/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Comportamento Animal/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , AMP Cíclico/metabolismo , Dopamina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Processamento Eletrônico de Dados , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Microscopia Confocal , Neurônios/efeitos dos fármacos , Octopamina/metabolismo , Octopamina/farmacologia , Receptores Dopaminérgicos/metabolismo , Sono/genética , Temperatura , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA