Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 249: 116837, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933681

RESUMO

Fucoidan, a type of sulfated polysaccharide known for its anticoagulant, anti-tumor and anti-inflammatory effects, has been reported to have strong affinity towards P-selectin. P-selectin, which plays an important role in metastasis by enhancing the adhesion of cancer cells to endothelium and activated platelets in distant organs, is overexpressed on many cancer types. This study demonstrates the synthesis of a fucoidan-based drug delivery system for minimizing the side effects of doxorubicin (Dox) with the help of active targeting toward P-selectin. Fucoidan-doxorubicin nanoparticles (FU-Dox NPs), developed by direct conjugation of Dox to the fucoidan backbone, showed a well-controlled size distribution and sustained release. The active targeting capability of FU-Dox NPs toward P-selectin resulted in enhanced cellular uptake and cytotoxicity against the MDA-MB-231 cell line with high P-selectin expression compared to the MDA-MB-468 cell line with low P-selectin expression.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Selectina-P/antagonistas & inibidores , Polissacarídeos/química , Antibióticos Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Doxorrubicina/química , Feminino , Humanos , Terapia de Alvo Molecular , Nanopartículas/química
2.
Matrix Biol ; 60-61: 176-189, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27641621

RESUMO

Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and growth. In this study, we explored the ability of a mesenchymal ECM to support neurite outgrowth from neurons in the superior cervical ganglia (SCG). Length and morphology of neurites extended on a decellularized fibroblast ECM were compared to those on substrates coated with laminin, a major ECM protein in neural tissue, or fibronectin, the main component of a mesenchymal ECM. Average radial neurite extension was equivalent on laminin and on the decellularized ECM, but contrasted with the shorter, curved neurites observed on the fibronectin substrate. Differences between neurites on fibronectin and on other substrates were confirmed by fast Fourier transform analyses. To control the direction of neurite outgrowth, we developed an ECM with linearly aligned fibril organization by orienting the fibroblasts that deposit the matrix on a polymeric surface micropatterned with a striped chemical interface. Neurites projected from SCGs appeared to reorient in the direction of the pattern. These results highlight the ability of a mesenchymal ECM to enhance neurite extension and to control the directional outgrowth of neurites. This micropatterned decellularized ECM architecture has potential as a regenerative microenvironment for nerve repair.


Assuntos
Matriz Extracelular/química , Fibroblastos/química , Regeneração Nervosa/fisiologia , Gânglio Cervical Superior/citologia , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Embrião de Mamíferos , Fibronectinas/química , Fibronectinas/farmacologia , Análise de Fourier , Laminina/química , Laminina/farmacologia , Células-Tronco Mesenquimais/química , Camundongos , Células NIH 3T3 , Neuritos/metabolismo , Neuritos/ultraestrutura , Células PC12 , Polietilenotereftalatos/química , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/crescimento & desenvolvimento , Gânglio Cervical Superior/metabolismo , Propriedades de Superfície
3.
PLoS One ; 8(12): e81947, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312611

RESUMO

Cancer has arisen to be of the most prominent health care issues across the world in recent years. Doctors have used physiological intervention as well as chemical and radioactive therapeutics to treat cancer thus far. As an alternative to current methods, gene delivery systems with high efficiency, specificity, and safety that can reduce side effects such as necrosis of tissue are under development. Although viral vectors are highly efficient, concerns have arisen from the fact that viral vectors are sourced from lethal diseases. With this in mind, rod shaped nano-materials such as carbon nanotubes (CNTs) have become an attractive option for drug delivery due to the enhanced permeability and retention effect in tumors as well as the ability to penetrate the cell membrane. Here, we successfully engineered poly (lactic-co-glycolic) (PLGA) functionalized CNTs to reduce toxicity concerns, provide attachment sites for pro-apoptotic protein caspase-3 (CP3), and tune the temporal release profile of CP3 within bone cancer cells. Our results showed that CP3 was able to attach to functionalized CNTs, forming CNT-PLGA-CP3 conjugates. We show this conjugate can efficiently transduce cells at dosages as low as 0.05 µg/ml and suppress cell proliferation up to a week with no further treatments. These results are essential to showing the capabilities of PLGA functionalized CNTs as a non-viral vector gene delivery technique to tune cell fate.


Assuntos
Caspase 3/metabolismo , Portadores de Fármacos/química , Espaço Extracelular/metabolismo , Ácido Láctico/química , Nanotubos de Carbono/química , Osteossarcoma/patologia , Ácido Poliglicólico/química , Transfecção/métodos , Animais , Apoptose/genética , Caspase 3/genética , Bovinos , Linhagem Celular Tumoral , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
PLoS One ; 8(11): e81113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282570

RESUMO

Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol) hydrogels using Dip Pen Nanolithography (DPN), we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs) spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa) hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.


Assuntos
Adesão Celular , Movimento Celular , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Elasticidade , Matriz Extracelular , Análise de Elementos Finitos , Imunofluorescência , Humanos , Hidrogéis , Células-Tronco Mesenquimais/enzimologia , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA