Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 3(1): vdab092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34355174

RESUMO

BACKGROUND: Glioblastoma remains incurable despite treatment with surgery, radiation therapy, and cytotoxic chemotherapy, prompting the search for a metabolic pathway unique to glioblastoma cells.13C MR spectroscopic imaging with hyperpolarized pyruvate can demonstrate alterations in pyruvate metabolism in these tumors. METHODS: Three patients with diagnostic MRI suggestive of a glioblastoma were scanned at 3 T 1-2 days prior to tumor resection using a 13C/1H dual-frequency RF coil and a 13C/1H-integrated MR protocol, which consists of a series of 1H MR sequences (T2 FLAIR, arterial spin labeling and contrast-enhanced [CE] T1) and 13C spectroscopic imaging with hyperpolarized [1-13C]pyruvate. Dynamic spiral chemical shift imaging was used for 13C data acquisition. Surgical navigation was used to correlate the locations of tissue samples submitted for histology with the changes seen on the diagnostic MR scans and the 13C spectroscopic images. RESULTS: Each tumor was histologically confirmed to be a WHO grade IV glioblastoma with isocitrate dehydrogenase wild type. Total hyperpolarized 13C signals detected near the tumor mass reflected altered tissue perfusion near the tumor. For each tumor, a hyperintense [1-13C]lactate signal was detected both within CE and T2-FLAIR regions on the 1H diagnostic images (P = .008). [13C]bicarbonate signal was maintained or decreased in the lesion but the observation was not significant (P = .3). CONCLUSIONS: Prior to surgical resection, 13C MR spectroscopic imaging with hyperpolarized pyruvate reveals increased lactate production in regions of histologically confirmed glioblastoma.

2.
Radiology ; 300(3): 626-632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156298

RESUMO

Background Pyruvate dehydrogenase (PDH) and lactate dehydrogenase are essential for adenosine triphosphate production in skeletal muscle. At the onset of exercise, oxidation of glucose and glycogen is quickly enabled by dephosphorylation of PDH. However, direct measurement of PDH flux in exercising human muscle is daunting, and the net effect of covalent modification and other control mechanisms on PDH flux has not been assessed. Purpose To demonstrate the feasibility of assessing PDH activation and changes in pyruvate metabolism in human skeletal muscle after the onset of exercise using carbon 13 (13C) MRI with hyperpolarized (HP) [1-13C]-pyruvate. Materials and Methods For this prospective study, sedentary adults in good general health (mean age, 42 years ± 18 [standard deviation]; six men) were recruited from August 2019 to September 2020. Subgroups of the participants were injected with HP [1-13C]-pyruvate at resting, during plantar flexion exercise, or 5 minutes after exercise during recovery. In parallel, hydrogen 1 arterial spin labeling MRI was performed to estimate muscle tissue perfusion. An unpaired t test was used for comparing 13C data among the states. Results At rest, HP [1-13C]-lactate and [1-13C]-alanine were detected in calf muscle, but [13C]-bicarbonate was negligible. During moderate flexion-extension exercise, total HP 13C signals (tC) increased 2.8-fold because of increased muscle perfusion (P = .005), and HP [1-13C]-lactate-to-tC ratio increased 1.7-fold (P = .04). HP [13C]-bicarbonate-to-tC ratio increased 8.4-fold (P = .002) and returned to the resting level 5 minutes after exercise, whereas the lactate-to-tC ratio continued to increase to 2.3-fold as compared with resting (P = .008). Conclusion Lactate and bicarbonate production from hyperpolarized (HP) [1-carbon 13 {13C}]-pyruvate in skeletal muscle rapidly reflected the onset and the termination of exercise. These results demonstrate the feasibility of imaging skeletal muscle metabolism using HP [1-13C]-pyruvate MRI and the sensitivity of in vivo pyruvate metabolism to exercise states. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Exercício Físico , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Adulto , Bicarbonatos/metabolismo , Estudos de Viabilidade , Humanos , Ácido Láctico/metabolismo , Masculino , Estudos Prospectivos
3.
Circ Res ; 127(12): 1568-1570, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33054563
4.
NMR Biomed ; 30(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272754

RESUMO

The pentose phosphate pathway (PPP) is thought to be upregulated in trauma (to produce excess NADPH) and in cancer (to provide ribose for nucleotide biosynthesis), but simple methods for detecting changes in flux through this pathway are not available. MRI of hyperpolarized 13 C-enriched metabolites offers considerable potential as a rapid, non-invasive tool for detecting changes in metabolic fluxes. In this study, hyperpolarized δ-[1-13 C]gluconolactone was used as a probe to detect flux through the oxidative portion of the pentose phosphate pathway (PPPox ) in isolated perfused mouse livers. The appearance of hyperpolarized (HP) H13 CO3- within seconds after exposure of livers to HP-δ-[1-13 C]gluconolactone demonstrates that this probe rapidly enters hepatocytes, becomes phosphorylated, and enters the PPPox pathway to produce HP-H13 CO3- after three enzyme catalyzed steps (6P-gluconolactonase, 6-phosphogluconate dehydrogenase, and carbonic anhydrase). Livers perfused with octanoate as their sole energy source show no change in production of H13 CO3- after exposure to low levels of H2 O2 , while livers perfused with glucose and insulin showed a twofold increase in H13 CO3- after exposure to peroxide. This indicates that flux through the PPPox is stimulated by H2 O2 in glucose perfused livers but not in livers perfused with octanoate alone. Subsequent perfusion of livers with non-polarized [1,2-13 C]glucose followed by 1 H NMR analysis of lactate in the perfusate verified that flux through the PPPox is indeed low in healthy livers and modestly higher in peroxide damaged livers. We conclude that hyperpolarized δ-[1-13 C]gluconolactone has the potential to serve as a metabolic imaging probe of this important biological pathway.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Gluconatos/metabolismo , Lactonas/metabolismo , Via de Pentose Fosfato , Animais , Gluconatos/química , Glucose/farmacologia , Insulina/farmacologia , Lactonas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA