Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38674873

RESUMO

The green walnut, which is frequently overlooked in favor of its more mature sibling, is becoming a topic of great significance because of its unique ecological role, culinary flexibility, and therapeutic richness. The investigation of the bioactive substances found in green walnuts and their possible effects on human health has therapeutic potential. Juglans regia L. is an important ecological component that affects soil health, biodiversity, and the overall ecological dynamic in habitats. Comprehending and recording these consequences are essential for environmental management and sustainable land-use strategies. Regarding cuisine, while black walnuts are frequently the main attraction, green walnuts have distinct tastes and textures that are used in a variety of dishes. Culinary innovation and the preservation of cultural food heritage depend on the understanding and exploration of these gastronomic characteristics. Omega-3 fatty acids, antioxidants, vitamins, and minerals are abundant in green walnuts, which have a comprehensive nutritional profile. Walnuts possess a wide range of pharmacological properties, including antioxidant, antibacterial, antiviral, anticancer, anti-inflammatory, and cognitive-function-enhancing properties. Consuming green walnuts as part of one's diet helps with antioxidant defense, cardiovascular health, and general well-being. Juglans regia L., with its distinctive flavor and texture combination, is not only a delicious food but also supports sustainable nutrition practices. This review explores the nutritional and pharmacological properties of green walnuts, which can be further used for studies in various food and pharmaceutical applications.


Assuntos
Antioxidantes , Juglans , Nozes , Humanos , Antioxidantes/análise , Ácidos Graxos Ômega-3/análise , Juglans/química , Valor Nutritivo , Nozes/química , Ecologia
2.
Heliyon ; 10(2): e25046, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312640

RESUMO

Phalsa is a tropical and subtropical fruit that is high in nutritional value and is primarily cultivated for its fruit. As, Phalsa fruit contain high number of vitamins (A and C), minerals (calcium, phosphorus, and iron), and fibre while being low in calories and fat. The fruit and seed of Phalsa contain 18 amino acids, the majority of which are aspartic acid, glutamic acid, and leucine. Based on in vivo and in vitro studies phalsa plant possess high antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic properties. However, antioxidant properties are found in the form of vitamin C, total phenolic, anthocyanin, flavonoid, and tannin. The phalsa plant's fruits and leaves have substantial anticancer action against cancer cell lines. Because of the presence of a broad range of physiologically active chemicals, investigations on phalsa plants revealed that some plant parts have radioprotective qualities. The anti-glycosidase and anti-amylase activity of aqueous fresh fruit extract was shown to be substantial. The phalsa plant contains an abundance of biologically active chemicals, allowing it to control microorganisms through a variety of processes. Phalsa methanolic leaf extract was revealed to have antimalarial and antiemetic effects. The hot and cold polysaccharide fractions extracted from the phalsa plant have potent hepatoprotective and therapeutic properties. Therefore, this review is based on the nutritional, bioactive, phytochemicals, and potential pharmacological uses of phalsa. The potential health benefits and economic potential of the phalsa berry's phytochemicals are promising areas for further study.

3.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687076

RESUMO

Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.


Assuntos
Caesalpinia , Chalcona , Antioxidantes/farmacologia , Bebidas , Corantes , Carne
4.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570594

RESUMO

This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.


Assuntos
Flavanonas , Flavonas , Animais , Flavanonas/química , Glicosídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375319

RESUMO

Poniol (Flacourtia jangomas) has beneficial health effects due to its high polyphenolic and good antioxidant activity content. This study aimed to encapsulate the Poniol fruit ethanolic extract to the sucrose matrix using the co-crystallization process and analyze the physicochemical properties of the co-crystalized product. The physicochemical property characterization of the sucrose co-crystallized with the Poniol extract (CC-PE) and the recrystallized sucrose (RC) samples was carried out through analyzing the total phenolic content (TPC), antioxidant activity, loading capacity, entrapment yield, bulk and traped densities, hygroscopicity, solubilization time, flowability, DSC, XRD, FTIR, and SEM. The result revealed that the CC-PE product had a good entrapment yield (76.38%) and could retain the TPC (29.25 mg GAE/100 g) and antioxidant properties (65.10%) even after the co-crystallization process. Compared to the RC sample, the results also showed that the CC-PE had relatively higher flowability and bulk density, lower hygroscopicity, and solubilization time, which are desirable properties for a powder product. The SEM analysis showed that the CC-PE sample has cavities or pores in the sucrose cubic crystals, which proposed that the entrapment was better. The XRD, DSC, and FTIR analyses also showed no changes in the sucrose crystal structure, thermal properties, and functional group bonding structure, respectively. From the results, we can conclude that co-crystallization increased sucrose's functional properties, and the co-crystallized product can be used as a carrier for phytochemical compounds. The CC-PE product with improved properties can also be utilized to develop nutraceuticals, functional foods, and pharmaceuticals.


Assuntos
Antioxidantes , Frutas , Cristalização/métodos , Fenóis , Sacarose , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA