Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biomedicines ; 11(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38137364

RESUMO

BACKGROUND: The treatment of grafts with vancomycin for ligament reconstruction in knee surgery is the current standard. However, high antibiotic concentrations have chondrotoxic effects. PURPOSE: To test the chondrotoxicity of clindamycin, gentamicin and vancomycin in comparable concentrations. In vitro and in vivo effective concentrations hugely vary from drug to drug. To allow for comparisons between these three commonly used antibiotics, the concentration ranges frequently used in orthopedic surgical settings were tested. STUDY DESIGN: Controlled laboratory study. METHODS: Human cartilage from 10 specimens was used to isolate chondrocytes. The chondrocytes were treated with clindamycin (1 mg/mL and 0.5 mg/mL), gentamicin (10 mg/mL and 5 mg/mL) or vancomycin (10 mg/mL and 5 mg/mL), at concentrations used for preoperative infection prophylaxis in ligament surgery. Observations were taken over a period of 7 days. A control of untreated chondrocytes was included. To test the chondrotoxicity, a lactate dehydrogenase (LDH) test and a water-soluble tetrazolium salt (WST-1) assay were performed on days 1, 3 and 7. In addition, microscopic examinations were performed after fluorescence staining of the cells at the same time intervals. RESULTS: All samples showed a reasonable vitality of the cartilage cells after 72 h. However, clindamycin and gentamicin both showed higher chondrotoxicity in all investigations compared to vancomycin. After a period of 7 days, only chondrocytes treated with vancomycin showed reasonable vitality. CONCLUSIONS: The preoperative treatment of ligament grafts with vancomycin is the most reasonable method for infection prophylaxis, in accordance with the current study results regarding chondrotoxicity; however, clindamycin and gentamicin cover a wider anti-bacterial spectrum. CLINICAL RELEVANCE: The prophylactic antibiotic treatment of ligament grafts at concentrations of 5 mg/mL or 10 mg/mL vancomycin is justifiable and reasonable. In specific cases, even the use of gentamicin and clindamycin is appropriate.

2.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834422

RESUMO

This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, function-depicting images with quantitative information that is useful for detecting the early, pre-clinical stage of diseases such as primary or post-traumatic osteoarthritis (OA/PTOA). In this context, this review summarizes (a) the structure and function of articular cartilage as a molecular imaging target, (b) quantitative MRI for non-invasive assessment of articular cartilage composition, microstructure, and function with the current state of medical diagnostic imaging, (c), non-destructive imaging methods, (c) non-destructive quantitative articular cartilage live-imaging methods, (d) artificial intelligence (AI) classification of degeneration and prediction of OA progression, and (e) our contribution to this field, which is an AI-supported, non-destructive quantitative optical biopsy for early disease detection that operates on a digital tissue architectural fingerprint. Collectively, this review shows that articular cartilage imaging has undergone profound changes in the purpose and expectations for which cartilage imaging is used; the image is becoming an AI-usable biomarker with non-invasive quantitative functional information. This may aid in the development of translational diagnostic applications and preventive or early therapeutic interventions that are yet beyond our reach.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Inteligência Artificial , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Imageamento por Ressonância Magnética/métodos , Pesquisa
3.
Adv Exp Med Biol ; 1402: 107-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052850

RESUMO

This chapter details how Alan Grodzinsky and his team unraveled the complex electromechanobiological structure-function relationships of articular cartilage and used these insights to develop an impressively versatile shear and compression model. In this context, this chapter focuses (i) on the effects of mechanical compressive injury on multiple articular cartilage properties for (ii) better understanding the molecular concept of mechanical injury, by studying gene expression, signal transduction and the release of potential injury biomarkers. Furthermore, we detail how (iii) this was used to combine mechanical injury with cytokine exposure or co-culture systems for generating a more realistic trauma model to (iv) investigate the therapeutic modulation of the injurious response of articular cartilage. Impressively, Alan Grodzinsky's research has been and will remain to be instrumental in understanding the proinflammatory response to injury and in developing effective therapies that are based on an in-depth understanding of complex structure-function relationships that underlay articular cartilage function and degeneration.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Humanos , Cartilagem Articular/lesões , Transdução de Sinais , Citocinas/metabolismo , Estresse Mecânico
4.
Front Immunol ; 14: 1336393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239351

RESUMO

Introduction: The last decade has led to rapid developments and increased usage of computational tools at the single-cell level. However, our knowledge remains limited in how extracellular cues alter quantitative macrophage morphology and how such morphological changes can be used to predict macrophage phenotype as well as cytokine content at the single-cell level. Methods: Using an artificial intelligence (AI) based approach, this study determined whether (i) accurate macrophage classification and (ii) prediction of intracellular IL-10 at the single-cell level was possible, using only morphological features as predictors for AI. Using a quantitative panel of shape descriptors, our study assessed image-based original and synthetic single-cell data in two different datasets in which CD14+ monocyte-derived macrophages generated from human peripheral blood monocytes were initially primed with GM-CSF or M-CSF followed by polarization with specific stimuli in the presence/absence of continuous GM-CSF or M-CSF. Specifically, M0, M1 (GM-CSF-M1, TNFα/IFNγ-M1, GM-CSF/TNFα/IFNγ-M1) and M2 (M-CSF-M2, IL-4-M2a, M-CSF/IL-4-M2a, IL-10-M2c, M-CSF/IL-10-M2c) macrophages were examined. Results: Phenotypes were confirmed by ELISA and immunostaining of CD markers. Variations of polarization techniques significantly changed multiple macrophage morphological features, demonstrating that macrophage morphology is a highly sensitive, dynamic marker of phenotype. Using original and synthetic single-cell data, cell morphology alone yielded an accuracy of 93% for the classification of 6 different human macrophage phenotypes (with continuous GM-CSF or M-CSF). A similarly high phenotype classification accuracy of 95% was reached with data generated with different stimuli (discontinuous GM-CSF or M-CSF) and measured at a different time point. These comparably high accuracies clearly validated the here chosen AI-based approach. Quantitative morphology also allowed prediction of intracellular IL-10 with 95% accuracy using only original data. Discussion: Thus, image-based machine learning using morphology-based features not only (i) classified M0, M1 and M2 macrophages but also (ii) classified M2a and M2c subtypes and (iii) predicted intracellular IL-10 at the single-cell level among six phenotypes. This simple approach can be used as a general strategy not only for macrophage phenotyping but also for prediction of IL-10 content of any IL-10 producing cell, which can help improve our understanding of cytokine biology at the single-cell level.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-10 , Humanos , Fator Estimulador de Colônias de Macrófagos , Fator de Necrose Tumoral alfa , Interleucina-4 , Inteligência Artificial , Células Cultivadas , Macrófagos , Citocinas , Fenótipo
5.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751354

RESUMO

Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-ß1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-ß1- and interleukin 1 beta (IL-1ß)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.


Assuntos
Materiais Biocompatíveis/química , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Mecanotransdução Celular/genética , Osteoartrite/terapia , Regeneração/efeitos dos fármacos , Materiais Biocompatíveis/uso terapêutico , Biomarcadores/metabolismo , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulação da Expressão Gênica , Dureza/fisiologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/cirurgia , Fenótipo , Regeneração/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Stem Cell Res Ther ; 11(1): 79, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087752

RESUMO

BACKGROUND: Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. METHODS: Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). RESULTS: Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. CONCLUSIONS: These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.


Assuntos
Células da Medula Óssea/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
8.
Sci Rep ; 7(1): 6640, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747783

RESUMO

Stem cells have been predicted to improve disease outcomes and patient lives. Steering stem cell fate - through controlling cell shape - may substantially accelerate progress towards this goal. As mesenchymal stromal cells (MSCs) are continuously exposed in vivo to a dynamically changing biomechanical environment, we hypothesized that exogenous forces can be applied for engineering a variety of significantly different MSC shapes. We applied specific cyclic stretch regimens to human MSCs and quantitatively measured the resulting cell shape, alignment, and expression of smooth muscle (SMC) differentiation markers, as those have been associated with elongated morphology. As proof of principle, a range of different shapes, alignments, and correlating SMC marker levels were generated by varying strain, length, and repetition of stretch. However, the major determinant of biomechanically engineering cellular shape was the repetition of a chosen stretch regimen, indicating that the engineered shape and associated differentiation were complex non-linear processes relying on sustained biomechanical stimulation. Thus, forces are key regulators of stem cell shape and the targeted engineering of specific MSC shapes through biomechanical forces represents a novel mechanobiology concept that could exploit naturally occurring in vivo forces for improving stem cell fate in clinical regenerative therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Forma Celular , Técnicas Citológicas/métodos , Células-Tronco Mesenquimais/citologia , Engenharia Metabólica/métodos , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico
9.
J Tissue Eng Regen Med ; 11(12): 3508-3522, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28371409

RESUMO

Controlling mesenchymal stromal cell (MSC) shape is a novel method for investigating and directing MSC behaviour in vitro. it was hypothesized that specifigc MSC shapes can be generated by using stiffness-defined biomaterial surfaces and by applying cyclic tensile forces. Biomaterials used were thin and thick silicone sheets, fibronectin coating, and compacted collagen type I sheets. The MSC morphology was quantified by shape descriptors describing dimensions and membrane protrusions. Nanoscale stiffness was measured by atomic force microscopy and the expression of smooth muscle cell (SMC) marker genes (ACTA2, TAGLN, CNN1) by quantitative reverse-transcription polymerase chain reaction. Cyclic stretch was applied with 2.5% or 5% amplitudes. Attachment to biomaterials with a higher stiffness yielded more elongated MSCs with fewer membrane protrusions compared with biomaterials with a lower stiffness. For cyclic stretch, compacted collagen sheets were selected, which were associated with the most elongated MSC shape across all investigated biomaterials. As expected, cyclic stretch elongated MSCs during stretch. One hour after cessation of stretch, however, MSC shape was rounder again, suggesting loss of stretch-induced shape. Different shape descriptor values obtained by different stretch regimes correlated significantly with the expression levels of SMC marker genes. Values of approximately 0.4 for roundness and 3.4 for aspect ratio were critical for the highest expression levels of ACTA2 and CNN1. Thus, specific shape descriptor values, which can be generated using biomaterial-associated stiffness and tensile forces, can serve as a template for the induction of specific gene expression levels in MSC. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Materiais Biocompatíveis/farmacologia , Forma Celular , Células-Tronco Mesenquimais/citologia , Resistência à Tração , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Fatores de Tempo
10.
Stem Cell Rev Rep ; 13(2): 258-266, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28154962

RESUMO

Many controversial results exist when comparing mesenchymal stromal cells (MSCs) derived from different sources. Reasons include not only variables in tissue origin, but also methods of cell preparation or choice of expansion media which can strongly influence the expression and hence, function of the cells. In this short report we aimed to investigate the expression of the cell anchoring proteins desmoglein 2, desmocollin 3 and plakophilin 2 in early passage placenta-derived MSCs of fetal (fetal pMSCs) and maternal (maternal pMSCs) origins versus adult bone marrow-derived MSCs (bmMSCs) that were expanded and cultured under the same good manufacturing practice (GMP) conditions. Comprehensive gene expression microarray analysis profiling indicated differential expression of these genes in the different MSC-derived types with fetal pMSCs expressing the highest levels of PKP2, DSC3 and DSG2, followed by maternal pMSCs, while bmMSCs expressed the lowest levels. A higher expression of PKP2 and DSC3 genes in fetal pMSCs was confirmed by qRT-PCR suggesting neonatal increases in the expression of these desmosomal genes vs. adult MSCs. Intracellular desmocollin 3 and desmoglein 2 expression was observed by flow cytometry and cytoplasmic plakophilin 2 by immunofluorescence in all three MSC sources. These data suggest that fetal pMSCs, maternal pMSCs and bmMSCs may anchor intermediate filaments to the plasma membrane via desmocollin 3, desmoglein 2 and plakophilin 2.


Assuntos
Desmocolinas/genética , Desmogleína 2/genética , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Placofilinas/genética , Adulto , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Desmocolinas/metabolismo , Desmogleína 2/metabolismo , Feminino , Feto/citologia , Imunofluorescência , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Placenta/citologia , Placofilinas/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Placenta ; 49: 64-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012456

RESUMO

Placenta-derived mesenchymal stromal cells (pMSCs) are a very attractive source of MSCs. In this short report we evaluated the expression of phenotypic markers from fetal and maternal pMSCs after exposure to myogenic medium commonly used to differentiate bone marrow MSCs (bmMSCs) to smooth muscle-like cells (SMCs). In order to reveal differences between these different MSC sources, cells were expanded and differentiated to elucidate whether this differentiation protocol facilitated efficient differentiation of SMCs from human pMSCs. We report that TGF-ß1, PDGF and ascorbic acid is not sufficient to produce SMCs from pMSCs.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular/fisiologia , Placenta/metabolismo , Células da Medula Óssea/citologia , Meios de Cultura , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Gravidez , Transcrição Gênica
12.
Sci Rep ; 6: 35840, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775041

RESUMO

Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/química , Células-Tronco Mesenquimais/citologia , Músculo Liso/citologia , Actinas/genética , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/genética , Microscopia de Força Atômica , Proteínas Musculares/genética , Fenótipo , Tubulina (Proteína)/metabolismo , Calponinas
13.
Stem Cell Res Ther ; 7: 29, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26869043

RESUMO

INTRODUCTION: Human mesenchymal stromal cells (MSCs) can be isolated from different sources including bone marrow and term placenta. These two populations display distinct patterns of proliferation and differentiation in vitro. Since proliferation and differentiation of cells are modulated by cell-matrix interactions, we investigated the attachment of MSCs to a set of peptide-coated surfaces and explored their interactions with peptides in suspension. METHODS: Human MSCs were isolated from bone marrow and term placenta and expanded. Binding of MSCs to peptides was investigated by a cell-attachment spot assay, by blocking experiments and flow cytometry. The integrin expression pattern was explored by a transcript array and corroborated by quantitative reverse transcription polymerase chain reaction and flow cytometry. RESULTS: Expanded placenta-derived MSCs (pMSCs) attached well to surfaces coated with fibronectin-derived peptides P7, P15, and P17, whereas bone marrow-derived MSCs (bmMSCs) attached to P7, but barely to P15 and P17. The binding of bmMSCs and pMSCs to the peptides was mediated by ß1 integrins. In suspension, expanded bmMSCs barely bind to P7, P13, P15, and less to P14 and P17. Ex vivo, bmMSCs failed to bind P7, but displayed a weak interaction with P13, P14, and P15. In suspension, expanded pMSCs displayed binding to many peptides, including P4, P7, P13, P14, P15, and P17. The differences observed in binding of bmMSCs and pMSCs to the peptides were associated with significant differences in expression of integrin α2-, α4-, and α6-chains. CONCLUSIONS: Human bmMSCs and pMSCs show distinct patterns of attachment to defined peptides and maintain differences in expression of integrins in vitro. Interactions of ex vivo bmMSCs with a given peptide yield different staining patterns compared to expanded bmMSCs in suspension. Attachment of expanded MSCs to peptides on surfaces is different from interactions of expanded MSCs with peptides in suspension. Studies designed to investigate the interactions of human MSCs with peptide-augmented scaffolds or peptides in suspension must therefore regard these differences in cell-peptide interactions.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Adulto , Idoso , Células da Medula Óssea/fisiologia , Adesão Celular , Células Cultivadas , Meios de Cultura/química , Feminino , Fibronectinas/química , Humanos , Masculino , Especificidade de Órgãos , Fragmentos de Peptídeos/química , Placenta/citologia , Gravidez
14.
Cytotherapy ; 18(3): 344-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26857228

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have great potential for use in cell-based therapies for restoration of structure and function of many tissue types including smooth muscle. METHODS: We compared proliferation, immunophenotype, differentiation capability and gene expression of bone marrow-derived MSCs expanded in different media containing human serum, plasma and platelet lysate in combination with commonly used protocols for myogenic, osteogenic, chondrogenic and adipogenic differentiation. Moreover, we developed a xenogenic-free protocol for myogenic differentiation of MSCs. RESULTS: Expansion of MSCs in media complemented with serum, serum + platelet lysate or plasma + platelet lysate were multipotent because they differentiated toward four mesenchymal (myogenic, osteogenic, chondrogenic, adipogenic) lineages. Addition of platelet lysate to expansion media increased the proliferation of MSCs and their expression of CD146. Incubation of MSCs in medium containing human serum or plasma plus 5% human platelet lysate in combination with smooth muscle cell (SMC)-inducing growth factors TGFß1, PDGF and ascorbic acid induced high expression of ACTA2, TAGLN, CNN1 and/or MYH11 contractile SMC markers. Osteogenic, adipogenic and chondrogenic differentiations served as controls. DISCUSSION: Our study provides novel data on the myogenic differentiation potential of human MSCs toward the SMC lineage using different xenogenic-free cell culture expansion media in combination with distinct differentiation medium compositions. We show that the choice of expansion medium significantly influences the differentiation potential of human MSCs toward the smooth muscle cell, as well as osteogenic, adipogenic and chondrogenic lineages. These results can aid in designing studies using MSCs for tissue-specific therapeutic applications.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Antígenos Heterófilos/farmacologia , Plaquetas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Meios de Cultura/química , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia
15.
PLoS One ; 10(12): e0145153, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673782

RESUMO

The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.


Assuntos
Potenciais de Ação , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Actinas/genética , Actinas/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Humanos , Canais Iônicos , Transporte de Íons , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Bexiga Urinária/citologia , Calponinas
16.
Cytotherapy ; 17(11): 1655-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344464

RESUMO

BACKGROUND AIMS: On review of the use of stem cells in the literature, promissory outcomes for functional organ recovery in many subspecialties in medicine underscore its therapeutic potential. The application of stem cells through the use of a needle can result in additional scar formation, which is undesired for delicate organs. The present work describes the use of a needle-less stem cell injector with the Immediate Drop on Demand Technology (I-DOT) for cell injection in vitro. METHODS: Mesenchymal stromal cells from human bone marrow were labeled with ethynyl-deoxyuridine (EdU) for 2 days and then were re-suspended. With the use of I-DOT, the cells were applied to type 1 collagen matrices or pig bladder tissue specimens with or without mucosa at different levels of energy. The collagen matrices were analyzed after 4 h and 5 days; bladder tissue specimens were analyzed 4 h after cell implantation. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT) assay was performed immediately after cell application to the collagen matrices. Histological analysis with the use of frozen sections and immunofluorescence was used to localize EdU-labeled cells. RESULTS: A considerable number of cells were detected by use of the MTT assay for collagen matrices. In the collagen matrix, the mean measured depth immediately after application ranged between 210 µm and 489 µm, 220 µm and 270 µm for entire bladder specimens, and 230 µm and 370 µm for bladder without mucosa. Cells survived for up to 5 days in the collagen matrix in both bladder specimens. CONCLUSIONS: Cells can survive during I-DOT application, which suggests that the I-DOT device may be a potentially suitable technology for needle-less cell application onto tissues.


Assuntos
Transplante de Células-Tronco Mesenquimais/instrumentação , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Desenho de Equipamento , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Agulhas , Suínos , Bexiga Urinária/transplante
17.
Tissue Eng Part B Rev ; 21(4): 365-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25789845

RESUMO

Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Incontinência Urinária por Estresse/terapia , Sobrevivência Celular , Humanos , Regeneração , Sinapses/fisiologia , Uretra/patologia , Incontinência Urinária por Estresse/patologia
18.
Stem Cells Dev ; 24(13): 1558-69, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25743703

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent cells that can be differentiated in vitro into a variety of cell types, including adipocytes or osteoblasts. Our recent studies indicated that a high expression of CD146 on MSCs from bone marrow correlates with their robust osteogenic differentiation potential. We therefore investigated if expression of CD146 on MSCs from the placenta correlates with a similar osteogenic differentiation potential. The MSCs were isolated specifically from the endometrial and fetal parts of human term placenta and expanded in separate cultures and compared with MSCs from bone marrow as controls. The expression of cell surface antigens was investigated by flow cytometry. Differentiation of MSCs was documented by cytochemistry and analysis of typical lineage marker genes. CD146-positive MSCs were separated from CD146-negative cells by magnet-assisted cell sorts (MACS). We report that the expression of CD146 is associated with a higher osteogenic differentiation potential in human placenta-derived MSCs (pMSCs) and the CD146(pos) pMSCs generated a mineralized extracellular matrix, whereas the CD146(neg) pMSCs failed to do so. In contrast, adipogenic and chondrogenic differentiation of pMSCs was not different in CD146(pos) compared with CD146(neg) pMSCs. Upon enrichment of pMSCs by MACS, the CD146(neg) and CD146(pos) populations maintained their expression levels for this antigen for several passages in vitro. We conclude that CD146(pos) pMSCs either respond to osteogenic stimuli more vividly or, alternatively, CD146(pos) pMSCs present a pMSC subset that is predetermined to differentiate into osteoblasts.


Assuntos
Antígeno CD146/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Placenta/citologia , Antígeno CD146/genética , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Gravidez
19.
Cell Transplant ; 24(11): 2171-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25608017

RESUMO

Stress urinary incontinence (SUI) is a largely ousted but significant medical, social, and economic problem. Surveys suggest that nowadays approximately 10% of the male and 15% of the female population suffer from urinary incontinence at some stage in their lifetime. In women, two major etiologies contribute to SUI: degeneration of the urethral sphincter muscle controlling the closing mechanism of the bladder outflow and changes in lower pelvic organ position associated with degeneration of connective tissue or with mechanical stress, including obesity and load and tissue injury during pregnancy and delivery. In males, the reduction of the sphincter muscle function is sometimes due to surgical interventions as a consequence of prostate cancer treatment, benign prostate hyperplasia, or of neuropathical origin. Accordingly, for women and men different therapies were developed. In some cases, SUI can be treated by physical exercise, electrophysiological stimulation, and pharmacological interventions. If this fails to improve the situation, surgical interventions are required. In standard procedures, endoprostheses for mechanical support of the weakened tissue or mechanical valves for a bladder outflow control are implanted. In 20% of cases treated, repeat procedures are required as implants yield all sorts of side effects in time. Based on preclinical studies, the application of an advanced therapy medicinal product (ATMP) such as implantation of autologous cells may be a curative and long-lasting therapy for SUI. Cellular therapy could also be an option for men suffering from incontinence caused by injury of the nerves controlling the muscular sphincter system. Here we briefly report on human progenitor cells, especially on mesenchymal stromal cells (MSCs), their expansion and differentiation to smooth muscle or striated muscle cells in vitro, labeling of cells for in vivo imaging, concepts of improved, precise, yet gentle application of cells in muscle tissue, and monitoring of injected cells in situ.


Assuntos
Diagnóstico por Imagem/métodos , Transplante de Células-Tronco Mesenquimais , Incontinência Urinária por Estresse/terapia , Animais , Biópsia , Feminino , Humanos , Masculino , Gravidez , Células-Tronco/citologia , Incontinência Urinária por Estresse/patologia , Incontinência Urinária por Estresse/cirurgia
20.
Adv Drug Deliv Rev ; 82-83: 123-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25451135

RESUMO

Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Regeneração , Medicina Regenerativa/métodos , Uretra/cirurgia , Incontinência Urinária por Estresse/terapia , Animais , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Células Satélites de Músculo Esquelético/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA