Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
2.
Mol Ther Methods Clin Dev ; 31: 101140, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027060

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic.

3.
J Control Release ; 348: 786-797, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718210

RESUMO

Despite recent advances in the field of mRNA therapy, the lack of safe and efficacious delivery vehicles with pharmaceutically developable properties remains a major limitation. Here, we describe the systematic optimisation of lipid-peptide nanocomplexes for the delivery of mRNA in two murine cancer cell types, B16-F10 melanoma and CT26 colon carcinoma as well as NCI-H358 human lung bronchoalveolar cells. Different combinations of lipids and peptides were screened from an original lipid-peptide nanocomplex formulation for improved luciferase mRNA transfection in vitro by a multi-factorial screening approach. This led to the identification of key structural elements within the nanocomplex associated with substantial improvements in mRNA transfection efficiency included alkyl tail length of the cationic lipid, the fusogenic phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol. The peptide component (K16GACYGLPHKFCG) was further improved by the inclusion of a linker, RVRR, that is cleavable by the endosomal enzymes cathepsin B and furin, and a hydrophobic motif (X-S-X) between the mRNA packaging (K16) and receptor targeting domains (CYGLPHKFCG). Nanocomplex transfections of a murine B16-F10 melanoma tumour supported the inclusion of cholesterol for optimal transfection in vivo as well as in vitro. In vitro transfections were also performed with mRNA encoding interleukin-15 as a potential immunotherapy agent and again, the optimised formulation with the key structural elements demonstrated significantly higher expression than the original formulation. Physicochemical characterisation of the nanocomplexes over time indicated that the optimal formulation retained biophysical properties such as size, charge and mRNA complexation efficiency for 14 days upon storage at 4 °C without the need for additional stabilising agents. In summary, we have developed an efficacious lipid-peptide nanocomplex with promising pharmaceutical development properties for the delivery of therapeutic mRNA.


Assuntos
Lipossomos , Melanoma , Animais , Humanos , Lipídeos/química , Lipossomos/química , Camundongos , Peptídeos/química , RNA Mensageiro/genética , Transfecção
4.
Adv Funct Mater ; 31(37): 2104843, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35712226

RESUMO

The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non-targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide-dependent indicating integrin-mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN-amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor-targeting, with minimal clearance by the liver and so enable delivery of tumor-targeted siRNA therapeutics.

5.
Sci Rep ; 10(1): 16660, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028860

RESUMO

Oxidovanadium complexes with organic ligands are well known to have cytotoxic or differentiating capabilities against a range of cancer cell types. Their limited use in clinical testing though has resulted largely from uncertainties about the long-term toxicities of such complexes, due in part to the speciation to vanadate ions in the circulation. We hypothesised that more highly stable complexes, delivered using liposomes, may provide improved opportunities for oxidovanadium applications against cancer. In this study we sourced specifically hydrophobic forms of oxidovanadium complexes with the explicit aim of demonstrating liposomal encapsulation, bioavailability in cultured neuroblastoma cells, and effective cytotoxic or differentiating activity. Our data show that four ethanol-solubilised complexes with amine bisphenol, aminoalcohol bisphenol or salan ligands are equally or more effective than a previously used complex bis(maltolato)oxovanadium(V) in neuroblastoma cell lines. Moreover, we show that one of these complexes can be stably incorporated into cationic liposomes where it retains very good bioavailability, apparently low speciation and enhanced efficacy compared to ethanol delivery. This study provides the first proof-of-concept that stable, hydrophobic oxidovanadium complexes retain excellent cellular activity when delivered effectively to cancer cells with nanotechnology. This offers the improved prospect of applying oxidovanadium-based drugs in vivo with increased stability and reduced off-target toxicity.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos , Neuroblastoma/tratamento farmacológico , Vanadatos/administração & dosagem , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia
6.
Nucleic Acid Ther ; 30(4): 237-248, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240058

RESUMO

Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.


Assuntos
Inativação Gênica/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Neuroblastoma/genética , Neuroblastoma/patologia , Neurogênese/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/genética , Tretinoína/efeitos adversos , Tretinoína/farmacologia
7.
Sci Rep ; 10(1): 1046, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974512

RESUMO

P53 mutations are responsible for drug-resistance of tumour cells which impacts on the efficacy of treatment. Alternative tumour suppressor pathways need to be explored to treat p53- deficient tumours. The E3 ubiquitin ligase, ITCH, negatively regulates the tumour suppressor protein TP73, providing a therapeutic target to enhance the sensitivity of the tumour cells to the treatment. In the present study, two p53-mutant neuroblastoma cell lines were used as in vitro models. Using immunostaining, western blot and qPCR methods, we firstly identified that ITCH was expressed on p53-mutant neuroblastoma cell lines. Transfection of these cell lines with ITCH siRNA could effectively silence the ITCH expression, and result in the stabilization of TP73 protein, which mediated the apoptosis of the neuroblastoma cells upon irradiation treatment. Finally, in vivo delivery of the ITCH siRNA using nanoparticles to the neuroblastoma xenograft mouse model showed around 15-20% ITCH silencing 48 hours after transfection. Our data suggest that ITCH could be silenced both in vitro and in vivo using nanoparticles, and silencing of ITCH sensitizes the tumour cells to irradiation treatment. This strategy could be further explored to combine the chemotherapy/radiotherapy treatment to enhance the therapeutic effects on p53-deficient neuroblastoma.


Assuntos
Neuroblastoma/terapia , Proteínas Repressoras/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/genética , Neuroblastoma/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Drug Target ; 28(6): 643-654, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31903789

RESUMO

Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the aim is to induce neural differentiation or death in tumour cells. However, although therapeutically effective, retinoids have only modest benefits and suffer from poor pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells themselves is considered to be due in part to increased CYP26 production. Retinoic acid metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic acid (RA) pharmacokinetics in pre-clinical neuroblastoma models. Here, we demonstrate that in cultured neuroblastoma tumour cells, RAMBAs enhance RA action as seen by morphological differentiation, AKT signalling and suppression of MYCN protein. Although active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective delivery in humans will be very challenging. Here, we demonstrate that such RAMBAs can be loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of RAMBAs in enhancing retinoid signalling in neuroblastoma cells and shows for the first time that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel opportunities for their delivery and application in humans.


Assuntos
Azóis/farmacologia , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/agonistas , Tretinoína/metabolismo , Azóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neuroblastoma , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Transdução de Sinais
9.
J Cyst Fibros ; 19 Suppl 1: S54-S59, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31948871

RESUMO

Gene therapy offers great promise for cystic fibrosis which has never been quite fulfilled due to the challenges of delivering sufficient amounts of the CFTR gene and expression persistence for a sufficient period of time in the lungs to have any effect. Initial trials explored both viral and non-viral vectors but failed to achieve a significant breakthrough. However, in recent years, new opportunities have emerged that exploit our increased knowledge and understanding of the biology of CF and the airway epithelium. New technologies include new viral and non-viral vector approaches to delivery, but also alternative nucleic acid technologies including oligonucleotides and siRNA approaches for gene silencing and gene splicing, described in this review, as presented at the 2019 annual European CF Society Basic Science meeting (Dubrovnik, Croatia). We also briefly discuss other emerging technologies including mRNA and CRISPR gene editing that are advancing rapidly. The future prospects for genetic therapies for CF are now diverse and more promising probably than any time since the discovery of the CF gene.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Terapia Genética , Fibrose Cística/genética , Fibrose Cística/terapia , DNA Recombinante , Inativação Gênica , Terapia Genética/métodos , Terapia Genética/tendências , Humanos
10.
J Invest Dermatol ; 140(5): 1035-1044.e7, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705875

RESUMO

Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions.


Assuntos
Conexinas/genética , Queratinócitos/fisiologia , Ceratite/genética , Mutação de Sentido Incorreto/genética , RNA Interferente Pequeno/genética , Pele/metabolismo , Alelos , Animais , Linhagem Celular , Quimera , Conexina 26 , Junções Comunicantes/metabolismo , Xenoenxertos , Heterozigoto , Humanos , Ceratite/terapia , Potenciais da Membrana , Camundongos , Pele/patologia , Transplante de Pele
11.
ACS Appl Mater Interfaces ; 11(9): 8731-8739, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30648848

RESUMO

Ciliated lung epithelial cells and the airway surface liquid (ASL) comprise one of the body's most important protective systems. This system is finely tuned, and perturbations to ASL rheology, ASL depth, ASL pH, the transepithelial potential, and the cilia beat frequency are all associated with disease pathology. Further, these apparently distinct properties interact with each other in a complex manner. For example, changes in ASL rheology can result from altered mucin secretion, changes in ASL pH, or changes in ASL depth. Thus, one of the great challenges in trying to understand airway pathology is that the properties of the ASL/epithelial cell system need to be assessed near-simultaneously and without perturbing the sample. Here, we show that nanosensor probes mounted on a scanning ion conductance microscope make this possible for the first time, without any need for labeling. We also demonstrate that ASL from senescence-retarded human bronchial epithelial cells retains its native properties. Our results demonstrate that by using a nanosensor approach, it is possible to pursue faster, more accurate, more coherent, and more informative studies of ASL and airway epithelia in health and disease.


Assuntos
Técnicas Biossensoriais/métodos , Mucosa Respiratória/metabolismo , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , Cílios/fisiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Nanotecnologia , Mucosa Respiratória/citologia
12.
Mol Ther ; 26(12): 2812-2822, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301666

RESUMO

RNAi induced by double-stranded small interfering RNA (siRNA) molecules has attracted great attention as a naturally occurring approach to silence gene expression with high specificity. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a master regulator of cytoskeletal gene expression and, thus, represents a promising target to prevent fibrosis. A major hurdle to implementing siRNA therapies is the method of delivery, and we have, thus, optimized lipid-peptide-siRNA (LPR) nanoparticles containing MRTF-B siRNAs as a targeted approach to prevent conjunctival fibrosis. We tested 15 LPR nanoparticle formulations with different lipid compositions, surface charges, and targeting or non-targeting peptides in human conjunctival fibroblasts. In vitro, the LPR formulation of the DOTMA/DOPE lipid with the targeting peptide Y (LYR) was the most efficient in MRTF-B gene silencing and non-cytotoxic compared to the non-targeting formulation. In vivo, subconjunctival administration of LYR nanoparticles containing MRTF-B siRNAs doubled bleb survival in a pre-clinical rabbit model of glaucoma filtration surgery. Furthermore, MRTF-B LYR nanoparticles reduced the MRTF-B mRNA by 29.6% in rabbit conjunctival tissues, which led to significantly decreased conjunctival scarring with no adverse side effects. LYR-mediated delivery of siRNA shows promising results to increase bleb survival and to prevent conjunctival fibrosis after glaucoma filtration surgery.


Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Glaucoma/complicações , Glaucoma/genética , Nanoestruturas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Fenômenos Biofísicos , Biópsia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Cirurgia Filtrante/efeitos adversos , Cirurgia Filtrante/métodos , Inativação Gênica , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Lipossomos , Nanopartículas , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Peptídeos/química , Coelhos
13.
Thorax ; 73(9): 847-856, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748250

RESUMO

INTRODUCTION: Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS: We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS: Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and ßENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION: Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Canais Epiteliais de Sódio/genética , Inativação Gênica , RNA Interferente Pequeno , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas
14.
Curr Opin Pharmacol ; 34: 119-124, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29107808

RESUMO

Gene therapy for cystic fibrosis (CF) has been the subject of intense research over the last twenty-five years or more, using both viral and liposomal delivery methods, but so far without the emergence of a clinical therapy. New approaches to CF gene therapy involving recent improvements to vector systems, both viral and non-viral, as well as new nucleic acid technologies have led to renewed interest in the field. The field of therapeutic gene editing is rapidly developing with the emergence of CRISPR/Cas9 as well as chemically modified mRNA therapeutics. These new types of nucleic acid therapies are also a good fit with delivery by non-viral delivery approaches which has led to a renewed interest in lipid-based and other nanoformulations.


Assuntos
Fibrose Cística/terapia , Terapia Genética , Animais , Fibrose Cística/genética , Dependovirus , Edição de Genes , Vetores Genéticos , Humanos , Lentivirus , Ácidos Nucleicos/uso terapêutico
15.
JAMA Ophthalmol ; 135(11): 1147-1155, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28975281

RESUMO

Importance: Postsurgical fibrosis is a critical determinant of the long-term success of glaucoma surgery, but no reliable biomarkers are currently available to stratify the risk of scarring. Objective: To compare the clinical phenotype of patients with conjunctival fibrosis after glaucoma surgery with candidate gene expression tissue biomarkers of fibrosis. Design, Setting, and Participants: In this cross-sectional study, 42 patients were recruited at the time of glaucoma surgery at the Moorfields Eye Hospital from September 1, 2014, to September 1, 2016. The participants were divided into those with fibrosis and those without fibrosis. Main Outcomes and Measures: Genotype-phenotype correlations of the IL6 or PRG4 gene and detailed clinical phenotype. The IL6 and PRG4 protein expression in conjunctival tissues was also assessed using in situ immunohistochemical analysis. Central bleb area, maximal bleb area, and bleb height were graded on a scale of 1 to 5 (1 indicating 0%; 2, 25%; 3, 50%; 4, 75%; and 5, 100%). Bleb vascularity was graded on a scale of 1 to 5 (1 indicating avascularity; 2, normal; 3, mild; 4, moderate; and 5, severe hyperemia). Results: A total of 42 patients were recruited during the study period; 28 participants (67%) had previously undergone glaucoma surgery (fibrotic group) (mean [SD] age, 43.8 [3.6 years]; 16 [57%] female; 22 [79%] white), and 14 participants (33%) had not previously undergone glaucoma surgery (nonfibrotic group) (mean [SD] age, 47.7 [6.9] years; 4 [29%] female; 9 [64%] white). The fibrotic group had marked bleb scarring and vascularization and worse logMAR visual acuity. The mean (SD) grades were 1.4 (0.1) for central bleb area, 1.4 (0.1) for bleb height, and 3.4 (0.2) for bleb vascularity. The IL6 gene was upregulated in fibrotic cell lines (mean, 0.040) compared with nonfibrotic cell lines (mean, 0.011) (difference, 0.029; 95% CI, 0.015-0.043; P = .003). The PRG4 gene was also downregulated in fibrotic cell lines (0.002) compared with nonfibrotic cell lines (mean, 0.109; difference, 0.107; 95% CI, 0.104-0.110; P = .03). The study found a strong correlation between the IL6 gene and the number of glaucoma operations (r = 0.94, P < .001) and logMAR visual acuity (r = 0.64, P = .03). A moderate correlation was found between the PRG4 gene and the number of glaucoma operations (r = -0.72, P = .005) and logMAR visual acuity (r = -0.62, P = .03). Conclusions and Relevance: IL6 and PRG4 represent potential novel tissue biomarkers of disease severity and prognosis in conjunctival fibrosis after glaucoma surgery. Future longitudinal studies with multiple postoperative measures are needed to validate the effect of these potential biomarkers of fibrosis.


Assuntos
Túnica Conjuntiva/patologia , Cirurgia Filtrante/efeitos adversos , Regulação da Expressão Gênica , Glaucoma/cirurgia , Interleucina-6/genética , Complicações Pós-Operatórias/genética , Proteoglicanas/genética , Adulto , Biomarcadores/metabolismo , Linhagem Celular , Túnica Conjuntiva/metabolismo , Estudos Transversais , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Genótipo , Humanos , Imuno-Histoquímica , Interleucina-6/biossíntese , Masculino , Pessoa de Meia-Idade , Fenótipo , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Estudos Prospectivos , Proteoglicanas/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
16.
Sci Rep ; 7(1): 5644, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717200

RESUMO

Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis. We isolated 10 primary fibrotic and 7 non-fibrotic conjunctival fibroblast cell lines from patients with and without previous glaucoma surgery, respectively. The patients were matched for ethnicity and age. We identified 246 genes that were differentially expressed by over two-fold and p < 0.05, of which 46 genes were upregulated and 200 genes were downregulated in the fibrotic cell lines compared to the non-fibrotic cell lines. We also carried out detailed gene ontology, KEGG, disease association, pathway commons, WikiPathways and protein network analyses, and identified distinct pathways linked to smooth muscle contraction, inflammatory cytokines, immune mediators, extracellular matrix proteins and oncogene expression. We further validated 11 genes that were highly upregulated or downregulated using real-time quantitative PCR and found a strong correlation between the RNA-Seq and qPCR results. Our study demonstrates that there is a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery and provides new insights into the mechanistic pathways driving the complex fibrotic process in the eye and other tissues.


Assuntos
Doenças da Túnica Conjuntiva/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Glaucoma/cirurgia , Análise de Sequência de RNA/métodos , Adulto , Idoso , Linhagem Celular , Doenças da Túnica Conjuntiva/etiologia , Feminino , Fibroblastos/citologia , Fibrose , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade
17.
Sci Rep ; 7(1): 700, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386087

RESUMO

The inhibition of ENaC may have therapeutic potential in CF airways by reducing sodium hyperabsorption, restoring lung epithelial surface fluid levels, airway hydration and mucociliary function. The challenge has been to deliver siRNA to the lung with sufficient efficacy for a sustained therapeutic effect. We have developed a self-assembling nanocomplex formulation for siRNA delivery to the airways that consists of a liposome (DOTMA/DOPE; L), an epithelial targeting peptide (P) and siRNA (R). LPR formulations were assessed for their ability to silence expression of the transcript of the gene encoding the α-subunit of the sodium channel ENaC in cell lines and primary epithelial cells, in submerged cultures or grown in air-liquid interface conditions. LPRs, containing 50 nM or 100 nM siRNA, showed high levels of silencing, particularly in primary airway epithelial cells. When nebulised these nanocomplexes still retained their biophysical properties and transfection efficiencies. The silencing ability was determined at protein level by confocal microscopy and western blotting. In vivo data demonstrated that these nanoparticles had the ability to silence expression of the α-ENaC subunit gene. In conclusion, these findings show that LPRs can modulate the activity of ENaC and this approach might be promising as co-adjuvant therapy for cystic fibrosis.


Assuntos
Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Técnicas de Transferência de Genes , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução Genética , Linhagem Celular , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/terapia , Técnicas de Silenciamento de Genes , Inativação Gênica , Terapia Genética , Lipossomos/química , Microscopia Confocal , Peptídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Transfecção
18.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L258-L267, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979861

RESUMO

Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway, but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT, but the resultant cell lines did not undergo mucociliary differentiation. We hypothesized that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. Cystic fibrosis (CF) and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 and then their morphology, replication kinetics, and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function, and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1-transduced basal cells showed normal cell morphology, karyotype, and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1-transduced cells were similar to those of untransduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.


Assuntos
Brônquios/citologia , Diferenciação Celular , Cílios/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Muco/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Dineínas do Axonema/metabolismo , Proliferação de Células , Forma Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dineínas/metabolismo , Impedância Elétrica , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Síndrome de Kartagener/fisiopatologia , Cariotipagem , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Fenótipo , Transdução Genética
19.
Sci Rep ; 6: 23125, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975732

RESUMO

Gene therapy for cystic fibrosis using non-viral, plasmid-based formulations has been the subject of intensive research for over two decades but a clinically viable product has yet to materialise in large part due to inefficient transgene expression. Minicircle DNA give enhanced and more persistent transgene expression compared to plasmid DNA in a number of organ systems but has not been assessed in the lung. In this study we compared minicircle DNA with plasmid DNA in transfections of airway epithelial cells. In vitro, luciferase gene expression from minicircles was 5-10-fold higher than with plasmid DNA. In eGFP transfections in vitro both the mean fluorescence intensity and percentage of cells transfected was 2-4-fold higher with minicircle DNA. Administration of equimolar amounts of DNA to mouse lungs resulted in a reduced inflammatory response and more persistent transgene expression, with luciferase activity persisting for 2 weeks from minicircle DNA compared to plasmid formulations. Transfection of equal mass amounts of DNA in mouse lungs resulted in a 6-fold increase in transgene expression in addition to more persistent transgene expression. Our findings have clear implications for gene therapy of airway disorders where plasmid DNA transfections have so far proven inefficient in clinical trials.


Assuntos
Dineínas do Axonema/genética , DNA Circular/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Luciferases de Vaga-Lume/genética , Pulmão/metabolismo , Animais , Dineínas do Axonema/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luciferases de Vaga-Lume/metabolismo , Camundongos , Plasmídeos , Transfecção , Transgenes
20.
Sci Rep ; 6: 21881, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26905457

RESUMO

There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively. The silencing efficiency was low when non-targeting peptides or siRNA alone or liposome-siRNA alone were used. LYR and LER nanoparticles also showed higher silencing efficiency than PEGylated LYR-P and LER-P nanoparticles. The nanoparticles were not cytotoxic using different liposomes, targeting peptides, and 50 nM siRNA. Three-dimensional fibroblast-populated collagen matrices were also used as a functional assay to measure contraction in vitro, and showed that MRTF-B LYR nanoparticles completely blocked matrix contraction after a single transfection treatment. In conclusion, this is the first study to develop and show that receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient and safe non-viral siRNA delivery system that could be used to prevent fibrosis after glaucoma filtration surgery and other contractile scarring conditions in the eye.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , Peptídeos/química , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Western Blotting , Células Cultivadas , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Humanos , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Interferência de RNA , RNA Interferente Pequeno/química , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA