Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(6)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980269

RESUMO

Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block < 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 µM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.


Assuntos
Músculo Esquelético , Ácido Zoledrônico , Animais , Camundongos , Trifosfato de Adenosina , Modelos Animais de Doenças , Glibureto/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ácido Zoledrônico/farmacologia , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Receptores de Sulfonilureias/efeitos dos fármacos , Receptores de Sulfonilureias/metabolismo
2.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359961

RESUMO

(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10-5 M in SUR2wt/AV and 8.6 ± 0.4 × 10-6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] "knock-in" mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.


Assuntos
Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipertricose/genética , Hipertricose/metabolismo , Complexo Mediador/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Animais , Atrofia/patologia , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Humanos , Camundongos , Fenótipo
3.
Function (Oxf) ; 1(1): zqaa004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865539

RESUMO

Dramatic cardiomegaly arising from gain-of-function (GoF) mutations in the ATP-sensitive potassium (KATP) channels genes, ABCC9 and KCNJ8, is a characteristic feature of Cantú syndrome (CS). How potassium channel over-activity results in cardiac hypertrophy, as well as the long-term consequences of cardiovascular remodeling in CS, is unknown. Using genome-edited mouse models of CS, we therefore sought to dissect the pathophysiological mechanisms linking KATP channel GoF to cardiac remodeling. We demonstrate that chronic reduction of systemic vascular resistance in CS is accompanied by elevated renin-angiotensin signaling, which drives cardiac enlargement and blood volume expansion. Cardiac enlargement in CS results in elevation of basal cardiac output, which is preserved in aging. However, the cardiac remodeling includes altered gene expression patterns that are associated with pathological hypertrophy and are accompanied by decreased exercise tolerance, suggestive of reduced cardiac reserve. Our results identify a high-output cardiac hypertrophy phenotype in CS which is etiologically and mechanistically distinct from other myocardial hypertrophies, and which exhibits key features of high-output heart failure (HOHF). We propose that CS is a genetically-defined HOHF disorder and that decreased vascular smooth muscle excitability is a novel mechanism for HOHF pathogenesis.


Assuntos
Mutação com Ganho de Função , Canais KATP , Camundongos , Animais , Canais KATP/genética , Mutação com Ganho de Função/genética , Remodelação Ventricular , Receptores de Sulfonilureias/genética , Cardiomegalia/genética , Trifosfato de Adenosina
4.
J Clin Invest ; 130(3): 1116-1121, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821173

RESUMO

Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS.


Assuntos
Cardiomegalia , Glibureto/farmacologia , Hipertricose , Canais KATP , Osteocondrodisplasias , Receptores de Sulfonilureias , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Hipertricose/tratamento farmacológico , Hipertricose/genética , Hipertricose/metabolismo , Hipertricose/patologia , Canais KATP/genética , Canais KATP/metabolismo , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo
5.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089727

RESUMO

Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.


Assuntos
Cardiomegalia/fisiopatologia , Ventrículos do Coração/fisiopatologia , Hipertricose/fisiopatologia , Canais KATP/metabolismo , Osteocondrodisplasias/fisiopatologia , Receptores de Sulfonilureias/metabolismo , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Modelos Animais de Doenças , Ecocardiografia , Acoplamento Excitação-Contração/genética , Feminino , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hipertricose/diagnóstico , Hipertricose/genética , Canais KATP/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiopatologia , Miócitos Cardíacos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Técnicas de Patch-Clamp , Receptores de Sulfonilureias/genética , Vasodilatação/genética , Remodelação Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA