Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 370-382, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484496

RESUMO

DNA viruses are responsible for many diseases in humans. Current treatments are often limited by toxicity, as in the case of cidofovir (CDV, Vistide), a compound used against cytomegalovirus (CMV) and adenovirus (AdV) infections. CDV is a polar molecule with poor bioavailability, and its overall clinical utility is limited by the high occurrence of acute nephrotoxicity. To circumvent these disadvantages, we designed nine CDV prodrug analogues. The prodrugs modulate the polarity of CDV with a long sulfonyl alkyl chain attached to one of the phosphono oxygens. We added capping groups to the end of the alkyl chain to minimize ß-oxidation and focus the metabolism on the phosphoester hydrolysis, thereby tuning the rate of this reaction by altering the alkyl chain length. With these modifications, the prodrugs have excellent aqueous solubility, optimized metabolic stability, increased cellular permeability, and rapid intracellular conversion to the pharmacologically active diphosphate form (CDV-PP). The prodrugs exhibited significantly enhanced antiviral potency against a wide range of DNA viruses in infected human foreskin fibroblasts. Single-dose intravenous and oral pharmacokinetic experiments showed that the compounds maintained plasma and target tissue levels of CDV well above the EC50 for 24 h. These experiments identified a novel lead candidate, NPP-669. NPP-669 demonstrated efficacy against CMV infections in mice and AdV infections in hamsters following oral (p.o.) dosing at a dose of 1 mg/kg BID and 0.1 mg/kg QD, respectively. We further showed that NPP-669 at 30 mg/kg QD did not exhibit histological signs of toxicity in mice or hamsters. These data suggest that NPP-669 is a promising lead candidate for a broad-spectrum antiviral compound.


Assuntos
Infecções por Citomegalovirus , Organofosfonatos , Pró-Fármacos , Camundongos , Humanos , Animais , Antivirais/farmacocinética , Disponibilidade Biológica , Pró-Fármacos/farmacologia , Citosina , Cidofovir
2.
Antiviral Res ; 159: 104-112, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287226

RESUMO

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper we describe a common assay platform designed to facilitate the parallel evaluation of antiviral activity against herpes simplex virus type 1, herpes simplex virus type 2, varicella-zoster virus, cytomegalovirus, vaccinia virus, cowpox virus, and adenovirus. The automated assays utilize monolayers of primary human foreskin fibroblast cells in 384-well plates as a common cell substrate and cytopathic effects and cytotoxicity are quantified with CellTiter-Glo. Data presented demonstrate that each of the assays is highly robust and yields data that are comparable to those from other traditional assays, such as plaque reduction assays. The assays proved to be both accurate and robust and afford an in depth assessment of antiviral activity against the diverse class of viruses with very small quantities of test compounds. In an accompanying paper, we present a standardized approach to evaluating antivirals against lymphotropic herpesviruses and polyomaviruses and together these studies revealed new activities for reference compounds. This approach has the potential to accelerate the development of broad spectrum therapies for the DNA viruses.


Assuntos
Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Orthopoxvirus/efeitos dos fármacos , Ensaio de Placa Viral/normas , Células Cultivadas , Citomegalovirus/efeitos dos fármacos , Efeito Citopatogênico Viral , Infecções por Vírus de DNA/tratamento farmacológico , Fibroblastos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos
3.
Antiviral Res ; 159: 122-129, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30287227

RESUMO

The search for new compounds with a broad spectrum of antiviral activity is important and requires the evaluation of many compounds against several distinct viruses. Researchers attempting to develop new antiviral therapies for DNA virus infections currently use a variety of cell lines, assay conditions and measurement methods to determine in vitro drug efficacy, making it difficult to compare results from within the same laboratory as well as between laboratories. In this paper, we describe the assessment of antiviral activity of a set of nucleoside analogs against BK polyomavirus, JC polyomavirus, Epstein-Barr virus, human herpesvirus 6B, and human herpesvirus 8 in an automated 384-well format and utilize qPCR assays to measure the accumulation of viral DNA. In an accompanying paper, we present a standardized approach to evaluating antivirals against additional herpesviruses, orthopoxviruses, and adenovirus. Together, they reveal new activities for reference compounds and help to define the spectrum of antiviral activity for a set of nucleoside analogs against a set of 12 DNA viruses that infect humans including representative human herpesviruses, orthopoxviruses, adenoviruses, and polyomaviruses. This analysis helps provide perspective on combinations of agents that would help provide broad coverage of significant pathogens in immunocompromised patients as well as against emerging infections.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/normas , Herpesviridae/efeitos dos fármacos , Nucleosídeos/farmacologia , Polyomavirus/efeitos dos fármacos , Automação Laboratorial , DNA Viral/análise , Descoberta de Drogas/métodos , Humanos , Replicação Viral/efeitos dos fármacos
4.
Antiviral Res ; 153: 1-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510156

RESUMO

Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections.


Assuntos
Adenina/análogos & derivados , Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/administração & dosagem , Organofosfonatos/administração & dosagem , Pró-Fármacos/administração & dosagem , Tirosina/análogos & derivados , Adenina/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Fígado/patologia , Mesocricetus , Análise de Sobrevida , Resultado do Tratamento , Tirosina/administração & dosagem
5.
Bioorg Med Chem Lett ; 26(20): 5087-5091, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624078

RESUMO

Human polyomaviruses are generally latent but can be reactivated in patients whose immune systems are suppressed. Unfortunately, current therapeutics for diseases associated with polyomaviruses are non-specific, have undefined mechanisms of action, or exacerbate the disease. We previously reported on a class of dihydropyrimidinones that specifically target a polyomavirus-encoded protein, T antigen, and/or inhibit a cellular chaperone, Hsp70, that is required for virus replication. To improve the antiviral activity of the existing class of compounds, we performed Biginelli and modified multi-component reactions to obtain new 3,4-dihydropyrimidin-2(1H)-ones and -thiones for biological evaluation. We also compared how substituents at the N-1 versus N-3 position in the pyrimidine affect activity. We discovered that AMT580-043, a N-3 alkylated dihydropyrimidin-2(1H)-thione, inhibits the replication of a disease-causing polyomavirus in cell culture more potently than an existing drug, cidofovir.


Assuntos
Antivirais/farmacologia , Polyomavirus/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Antivirais/química , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Pirimidinonas/química , Relação Estrutura-Atividade
6.
Antimicrob Agents Chemother ; 58(1): 274-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145545

RESUMO

Methylenecyclopropane nucleoside (MCPN) analogs are being investigated for treatment of human cytomegalovirus (HCMV) infection because of favorable preclinical data and limited ganciclovir cross-resistance. Monohydroxymethyl MCPNs bearing ether and thioether functionalities at the purine 6 position have antiviral activity against herpes simplex virus (HSV) and varicella-zoster virus (VZV) in addition to HCMV. The role of the HCMV UL97 kinase in the mechanism of action of these derivatives was examined. When tested against a kinase-inactive UL97 K355M virus, a moderate 5- to 7-fold increase in 50% effective concentration (EC50) was observed, in comparison to a 13- to 25-fold increase for either cyclopropavir or ganciclovir. Serial propagation of HCMV under two of these compounds selected for three novel UL97 mutations encoding amino acid substitutions D456N, C480R,and Y617del. When transferred to baseline laboratory HCMV strains, these mutations individually conferred resistance to all of the tested MCPNs, ganciclovir, and maribavir. However, the engineered strains also demonstrated severe growth defects and abnormal cytopathic effects similar to the kinase-inactive mutant. Expressed and purified UL97 kinase showed in vitro phosphorylation of the newly tested MCPNs. Thus, HCMV UL97 kinase is involved in the antiviral action of these MCPNs, but the in vitro selection of UL97-defective viruses suggests that their activity against more typical ganciclovir-resistant growth-competent UL97 mutants may be relatively preserved.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , Éter/química , Sulfetos/química , Linhagem Celular , Humanos
7.
Antimicrob Agents Chemother ; 57(8): 3518-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669381

RESUMO

Methylenecyclopropane nucleosides have been reported to be active against many of the human herpesviruses. The most active compound of this class is cyclopropavir (CPV), which exhibits good antiviral activity against human cytomegalovirus (HCMV), Epstein-Barr virus, both variants of human herpesvirus 6, and human herpesvirus 8. CPV has two hydroxymethyl groups on the methylenecyclopropane ring, but analogs with a single hydroxymethyl group, such as the prototypical (S)-synguanol, are also active and exhibit a broader spectrum of antiviral activity that also includes hepatitis B virus and human immunodeficiency virus. Here, a large set of monohydroxymethyl compounds with ether and thioether substituents at the 6 position of the purine was synthesized and evaluated for antiviral activity against a range of human herpesviruses. Some of these analogs had a broader spectrum of antiviral activity than CPV, in that they also inhibited the replication of herpes simplex viruses 1 and 2 and varicella-zoster virus. Interestingly, the antiviral activity of these compounds appeared to be dependent on the activity of the HCMV UL97 kinase but was relatively unaffected by the absence of thymidine kinase activity in HSV. These data taken together indicate that the mechanism of action of these analogs is distinct from that of CPV. They also suggest that they might be useful as broad-spectrum antiherpesvirus agents and may be effective in the treatment of resistant virus infections.


Assuntos
Antivirais/síntese química , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Herpesviridae/efeitos dos fármacos , Antivirais/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclopropanos/química , Citomegalovirus/enzimologia , DNA Viral/análise , Avaliação Pré-Clínica de Medicamentos , Guanina/análogos & derivados , Guanina/farmacologia , Herpesviridae/fisiologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 6/fisiologia , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/fisiologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/farmacologia , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
8.
Antimicrob Agents Chemother ; 55(10): 4682-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21788463

RESUMO

Cyclopropavir (CPV) is active against human cytomegalovirus (CMV), as well as both variants of human herpesvirus 6 and human herpesvirus 8. The mechanism of action of CPV against CMV is similar to that of ganciclovir (GCV) in that it is phosphorylated initially by the CMV UL97 kinase, resulting in inhibition of viral DNA synthesis. Resistance to CPV maps to the UL97 kinase but is associated primarily with H520Q mutations and thus retains good antiviral activity against most GCV-resistant isolates. An examination of CMV-infected cultures treated with CPV revealed unusual cell morphology typically associated with the absence of UL97 kinase activity. A surrogate assay for UL97 kinase activity confirmed that CPV inhibited the activity of this enzyme and that its action was similar to the inhibition seen with maribavir (MBV) in this assay. Combination studies using real-time PCR indicated that, like MBV, CPV also antagonized the efficacy of GCV and were consistent with the observed inhibition of the UL97 kinase. Deep sequencing of CPV-resistant laboratory isolates identified a frameshift mutation in UL27, presumably to compensate for a loss of UL97 enzymatic activity. We conclude that the mechanism of action of CPV against CMV is complex and involves both the inhibition of DNA synthesis and the inhibition of the normal activity of the UL97 kinase.


Assuntos
Antivirais/farmacologia , Ciclopropanos/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , DNA Viral , Guanina/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Sequência de Bases , Benzimidazóis/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , DNA Viral/biossíntese , Farmacorresistência Viral/genética , Mutação da Fase de Leitura , Ganciclovir/farmacologia , Guanina/farmacologia , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribonucleosídeos/farmacologia , Análise de Sequência de DNA
9.
Antimicrob Agents Chemother ; 53(12): 5251-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19770274

RESUMO

A series of 4'-thionucleosides were synthesized and evaluated for activities against orthopoxviruses and herpesviruses. We reported previously that one analog, 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU), exhibits good activity both in vitro and in vivo against two orthopoxviruses. This compound also has good activity in cell culture against many of the herpesviruses. It inhibited the replication of herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus with 50% effective concentrations (EC(50)s) of 0.1, 0.5, and 2 microM, respectively. It also inhibited the replication of human cytomegalovirus (HCMV) with an EC(50) of 5.9 microM but did not selectively inhibit Epstein-Barr virus, human herpesvirus 6, or human herpesvirus 8. While acyclovir-resistant strains of HSV-1 and HSV-2 were comparatively resistant to 4'-thioIDU, it retained modest activity (EC(50)s of 4 to 12 microM) against these strains. Some ganciclovir-resistant strains of HCMV also exhibited reduced susceptibilities to the compound, which appeared to be related to the specific mutations in the DNA polymerase, consistent with the observed incorporation of the compound into viral DNA. The activity of 4'-thioIDU was also evaluated using mice infected intranasally with the MS strain of HSV-2. Although there was no decrease in final mortality rates, the mean length of survival after inoculation increased significantly (P < 0.05) for all animals receiving 4'-thioIDU. The findings from the studies presented here suggest that 4'-thioIDU is a good inhibitor of some herpesviruses, as well as orthopoxviruses, and this class of compounds warrants further study as a therapy for infections with these viruses.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/tratamento farmacológico , Herpesviridae/efeitos dos fármacos , Nucleosídeos de Pirimidina/farmacologia , Nucleosídeos de Pirimidina/uso terapêutico , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , Antivirais/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/fisiologia , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Técnica Indireta de Fluorescência para Anticorpo , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/genética , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 6/genética , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Estrutura Molecular , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/química , Proteínas Virais/genética , Proteínas Virais/fisiologia
10.
Virol J ; 6: 9, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19159461

RESUMO

The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb) and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.


Assuntos
Benzimidazóis/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ribonucleosídeos/farmacologia , Replicação Viral , Motivos de Aminoácidos , Linhagem Celular , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/fisiologia , Humanos , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
11.
J Virol ; 82(10): 5054-67, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18321963

RESUMO

Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinase-dependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding motif or the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.


Assuntos
Citomegalovirus/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Núcleo Celular/química , Chlorocebus aethiops , Cromatografia Líquida , Sequência Conservada , Citomegalovirus/genética , Citoplasma/química , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Proteínas/isolamento & purificação , Alinhamento de Sequência
12.
Bioorg Med Chem ; 13(14): 4443-9, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15908221

RESUMO

As a surrogate for 4'-hydroxy-5'-noraristeromycin and related carbocyclic nucleosides, an efficient, enantiodivergent synthetic route to both enantiomers of 5-(6-amino-9H-purin-9-yl)-3,3-difluorocyclopentane-1,2-diol (6 and ent-6) has been developed from a common starting material ((+)-(1R,4S)-4-hydroxy-2-cyclopenten-1-yl acetate, 10). Both compounds were assayed versus a series of viruses. The only response found was for compound 6 toward vaccinia and cowpox (EC50 of 143 and 94 microM, respectively) and human cytomegalovirus (EC50 of 6.2 microM). Both compounds were non-cytotoxic. While not as active as cidofovir toward the orthopox viruses and ganciclovir toward cytomegalovirus, compound 6 offers a new structural prototype upon which to build for uncovering new agents effective against these viral types.


Assuntos
Adenosina/análogos & derivados , Antivirais/química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Orthopoxvirus/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Citomegalovirus/crescimento & desenvolvimento , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Orthopoxvirus/crescimento & desenvolvimento , Células Vero , Ensaio de Placa Viral
13.
Antiviral Res ; 65(2): 97-105, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15708636

RESUMO

Herpesviruses cause a wide variety of human diseases ranging from cold sores and genital herpes to encephalitis, congenital infections and lymphoproliferative diseases. These opportunistic viruses cause major problems in immunocompromised individuals such as transplant recipients, cancer patients, and HIV-infected persons. The current treatment of these infections is not optimal and there is a need for more active, less toxic compounds that might be used in place of or in addition to current therapies. We have evaluated a new series of 4-oxo-dihydroquinolines, which have a different mechanism of action than nucleosides and have activity against multiple herpesviruses. Of the four new compounds evaluated, two (PHA-529311 and PHA-570886) had greater activity than the parent, PHA-183792, against several herpesviruses and one (PHA-568561) was as effective as the parent. A fourth, PHA-243672, was considerably less effective. They had greater efficacy against cytomegalovirus (CMV) than the other herpesviruses tested and also had activity against acyclovir-resistant herpes simplex virus and varicella-zoster virus isolates and ganciclovir or foscarnet-resistant CMV isolates. These results confirm the broad-spectrum efficacy of these compounds against multiple herpesviruses and suggest that members of this class may have a potential role for treatment of a variety of herpesvirus infections.


Assuntos
Antivirais/farmacologia , Herpesviridae/efeitos dos fármacos , Quinolinas/farmacologia , Antivirais/química , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herpesviridae/enzimologia , Herpesviridae/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Inibidores da Síntese de Ácido Nucleico , Quinolinas/química , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
14.
J Infect Dis ; 191(3): 396-9, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15633099

RESUMO

The acyclic nucleoside phosphonate cidofovir (CDV) and its closely related analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine ([S]-HPMPA) have been reported to have activity against many adenovirus (AdV) serotypes. A new series of orally active ether lipid-ester prodrugs of CDV and of (S)-HPMPA that have slight differences in the structure of their lipid esters were evaluated, in tissue-culture cells, for activity against 5 AdV serotypes. The results indicated that, against several AdV serotypes, the most active compounds were 15-2500-fold more active than the unmodified parent compounds and should be evaluated further for their potential to treat AdV infections in humans.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Citosina/análogos & derivados , Nucleosídeos/farmacologia , Organofosfonatos/farmacologia , Pró-Fármacos/farmacologia , Replicação Viral/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Adenovírus Humanos/fisiologia , Antivirais/síntese química , Células Cultivadas , Cidofovir , Citosina/síntese química , Citosina/química , Citosina/farmacologia , Ésteres/química , Éter/química , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana/métodos , Nucleosídeos/química , Organofosfonatos/síntese química , Organofosfonatos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química
15.
Antimicrob Agents Chemother ; 47(7): 2186-92, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12821466

RESUMO

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and human herpesvirus 8 (HHV-8) are responsible for a number of clinical manifestations in both normal and immunocompromised individuals. The parent benzimidazole ribonucleosides evaluated in this series, 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) and maribavir (1263W94), are potent and selective inhibitors of human CMV replication. These nucleosides act by two different mechanisms. BDCRB blocks the processing and maturation of viral DNA, whereas 1263W94 inhibits the viral enzyme pUL97 and interferes with DNA synthesis. In the present study, we have evaluated the in vitro antiviral activity of BDCRB, an analog, GW275175X (175X), and 1263W94 against the replication of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6, and HHV-8. By using various methodologies, significant activity was observed against human CMV and EBV but not against HSV-1, HSV-2, VZV, HHV-6, or HHV-8. Plaque reduction assays performed on a variety of laboratory and clinical isolates of human CMV indicated that all strains, including those resistant to ganciclovir (GCV) and foscarnet, were sensitive to all three benzimidazole ribonucleosides, with mean 50% effective concentration values of about 1 to 5 microM compared to that of GCV at 6 microM. The toxicity of these compounds in tissue culture cells appeared to be similar to that observed with GCV. These results demonstrate that the benzimidazole ribonucleosides are active against human CMV and EBV and suggest that they may be useful for the treatment of infections caused by these herpesviruses.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Ribonucleosídeos/farmacologia , Antivirais/química , Benzimidazóis/química , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/crescimento & desenvolvimento , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 2/crescimento & desenvolvimento , Herpesvirus Humano 3/efeitos dos fármacos , Herpesvirus Humano 3/crescimento & desenvolvimento , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 6/crescimento & desenvolvimento , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/crescimento & desenvolvimento , Técnicas In Vitro , Ribonucleosídeos/química , Replicação Viral/efeitos dos fármacos
16.
Nucleosides Nucleotides Nucleic Acids ; 22(12): 2105-19, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14714760

RESUMO

We have reported previously that purine methylenecyclopropane analogs are potent agents against cytomegaloviruses. In an attempt to extend the activity of these compounds, the 2-amino-6-cyclopropylaminopurine analog, QYL-1064, was selected for further study by modifying the purine 6 substituent. A total of 22 analogs were tested against herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), Epstein-Barr virus (EBV), human herpesvirus type 6 (HHV-6) and human herpesvirus type 8 (HHV-8). Ten of the analogs had activity against at least one of the viruses tested. One compound had moderate activity against HSV-1 and six had activity against VZV. All but one compound was active against HCMV with a mean EC50 of 2.1 +/- 0.6 microM, compared with a mean EC50 of 3.9 +/- 0.8 microM for ganciclovir. Of special interest was the fact that eight of the ten compounds were active against both HHV-6A and HHV-6B with mean EC50 values of 6.0 +/- 5.2 mciroM and <2.4 +/- 1.5 microM, respectively. Only two compounds had activity against EBV, whereas all but one compound was active against HHV-8 with a mean EC50 of 3.1 +/- 1.7 microM. These results indicate that members of this series of methylenecyclopropane analogs are highly active against HCMV, HHV-6, and HHV-8 but are less active against HSV, VZV, and EBV.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Guanosina/análogos & derivados , Herpesviridae/efeitos dos fármacos , Antivirais/química , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclopropanos/química , Citomegalovirus/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 6/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Muromegalovirus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA