Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 7(1): 919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079981

RESUMO

Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct retinoblastoma subtypes with different clinical behavior have been described based on gene expression and methylation profiling. Using consensus clustering of DNA methylation analysis from 61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2 retinoblastomas outside the MYCN-driven cluster are characterized by high expression of genes from mesodermal development, including NKX2-5. Knockdown of MYCN expression in retinoblastoma cell models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell models better identifies MYCN-driven retinoblastoma than MYCN amplification and can identify cases that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated and less aggressive tumor biology.


Assuntos
Proteína Proto-Oncogênica N-Myc , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/patologia , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Metilação de DNA , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Neoplasias da Retina/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Desdiferenciação Celular/genética , Feminino , Masculino , Pré-Escolar
3.
Front Genet ; 13: 867018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711922

RESUMO

Occurrence of extra-chromosomal circular DNA is a phenomenon frequently observed in tumor cells, and the presence of such DNA has been recognized as a marker of adverse outcome across cancer types. We here describe a computational workflow for identification of DNA circles from long-read sequencing data. The workflow is implemented based on the Snakemake workflow management system. Its key step uses a graph-theoretic approach to identify putative circular fragments validated on simulated reads. We then demonstrate robustness of our approach using nanopore sequencing of selectively enriched circular DNA by highly sensitive and specific recovery of plasmids and the mitochondrial genome, which is the only circular DNA in normal human cells. Finally, we show that the workflow facilitates detection of larger circular DNA fragments containing extrachromosomal copies of the MYCN oncogene and the respective breakpoints, which is a potentially useful application in disease monitoring of several cancer types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA