RESUMO
Recapitulating spontaneous metastasis in preclinical models is crucial for understanding mechanisms underlying cancer progression and testing effective therapeutic interventions. We present a protocol for establishing and characterizing the spontaneous metastasis model in mice. We describe steps for generating primary tumors, tumor resection, monitoring metastatic dissemination, and evaluating metastatic burden using histological and imaging techniques. This protocol provides a valuable tool for studying metastasis in vivo and testing therapeutic strategies aimed at preventing or targeting metastatic diseases. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Assuntos
Modelos Animais de Doenças , Metástase Neoplásica , Animais , Camundongos , Linhagem Celular Tumoral , FemininoRESUMO
Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE: EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.
Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Tumor Desmoplásico de Pequenas Células Redondas , Proteínas de Fusão Oncogênica , Piperazinas , Piridinas , Proteína EWS de Ligação a RNA , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Camundongos Endogâmicos NODRESUMO
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Feniltioidantoína , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Receptores Androgênicos/genética , Benzamidas/farmacologia , NitrilasRESUMO
Desmoplastic small round cell tumor (DSRCT) is an aggressive pediatric cancer caused by the EWSR1-WT1 fusion oncoprotein. The tumor is refractory to treatment with a 5-year survival rate of only 15-25%, necessitating the development of novel therapeutics, especially those able to target chemoresistant subpopulations. Novel in vitro cancer stem cell-like (CSC-like) culture conditions increase the expression of stemness markers (SOX2, NANOG) and reduce DSRCT cell line susceptibility to chemotherapy while maintaining the ability of DSRCT cells to form xenografts. To gain insights into this chemoresistant model, RNA-seq was performed to elucidate transcriptional alterations between DSRCT cells grown in CSC-like spheres and normal 2-dimensional adherent state. Commonly upregulated and downregulated genes were identified and utilized in pathway analysis revealing upregulation of pathways related to chromatin assembly and disassembly and downregulation of pathways including cell junction assembly and extracellular matrix organization. Alterations in chromatin assembly suggest a role for epigenetics in the DSRCT CSC-like state, which was further investigated with ATAC-seq, identifying over 10,000 differentially accessible peaks, including 4444 sphere accessible peaks and 6,120 adherent accessible peaks. Accessible regions were associated with higher gene expression, including increased accessibility of the CSC marker SOX2 in CSC-like culture conditions. These analyses were further utilized to identify potential CSC therapeutic targets, leading to the identification of B-lymphocyte kinase (BLK) as a CSC-enriched, EWSR1-WT1-regulated, druggable target. BLK inhibition and knockdown reduced CSC-like properties, including abrogation of tumorsphere formation and stemness marker expression. Importantly, BLK knockdown reduced DSRCT CSC-like cell chemoresistance, making its inhibition a promising target for future combination therapy.
RESUMO
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de MembranaRESUMO
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
RESUMO
BACKGROUND: Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs. METHODS: ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published datasets. RESULTS: ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was observed in 78% of NEPC PDXs samples (N = 27) relative to 33% of adeno-CRPC (N = 86), 2% of localised PC (N = 50), and 0% of benign prostate specimens (N = 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83% of lung carcinoid tissues (N = 12) and 90% of SCLC tissues (N = 10) exhibited medium/high intensity relative to 40% of lung adenocarcinoma (N = 15). CONCLUSION: ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular indicator for SCNCs.
Assuntos
Carcinoma Neuroendócrino , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Carcinoma Neuroendócrino/patologia , Carcinoma de Células Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Fenótipo , Neoplasias da Próstata/patologia , RNA Mensageiro , Carcinoma de Pequenas Células do Pulmão/genéticaRESUMO
Desmoplastic small round cell tumor (DSRCT) is a rare pediatric cancer caused by the EWSR1-WT1 fusion oncogene. Despite initial response to chemotherapy, DSRCT has a recurrence rate of over 80% leading to poor patient prognosis with a 5-year survival rate of only 15-25%. Owing to the rarity of DSRCT, sample scarcity is a barrier in understanding DSRCT biology and developing effective therapies. Utilizing a novel pair of primary and recurrent DSRCTs, we present the first map of DSRCT genomic breakpoints and the first comparison of gene expression alterations between primary and recurrent DSRCT. Our genomic breakpoint map includes the lone previously published DSRCT genomic breakpoint, the breakpoint from our novel primary/recurrent DSRCT pair, as well as the breakpoints of five available DSRCT cell lines and five additional DSRCTs. All mapped breakpoints were unique and most breakpoints included a 1-3 base pair microhomology suggesting microhomology-mediated end-joining as the mechanism of translocation fusion and providing novel insights into the etiology of DSRCT. Through RNA-sequencing analysis, we identified altered genes and pathways between primary and recurrent DSRCTs. Upregulated pathways in the recurrent tumor included several DNA repair and mRNA splicing-related pathways, while downregulated pathways included immune system function and focal adhesion. We further found higher expression of the EWSR1-WT1 upregulated gene set in the recurrent tumor as compared to the primary tumor and lower expression of the EWSR1-WT1 downregulated gene set, suggesting the EWSR1-WT1 fusion continues to play a prominent role in recurrent tumors. The identified pathways including upregulation of DNA repair and downregulation of immune system function may help explain DSRCT's high rate of recurrence and can be utilized to improve the understanding of DSRCT biology and identify novel therapies to both help prevent recurrence and treat recurrent tumors.
RESUMO
Mitogen Activated Protein (MAP) kinases are a category of serine/threonine kinases that have been demonstrated to regulate intracellular events including stress responses, developmental processes, and cancer progression Although many MAP kinases have been extensively studied in various disease processes, MAP3K19 is an understudied kinase whose activities have been linked to lung disease and fibroblast development. In this manuscript, we use bioinformatics databases starBase, GEPIA, and KMPlotter, to establish baseline expressions of MAP3K19 in different tissue types and its correlation with patient survival in different cancers.
Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias , Humanos , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Desmoplastic small round cell tumor (DSRCT) is characterized by the t(11;22)(p13;q12) translocation, which fuses the transcriptional regulatory domain of EWSR1 with the DNA-binding domain of WT1, resulting in the oncogenic EWSR1-WT1 fusion protein. The paucity of DSRCT disease models has hampered preclinical therapeutic studies on this aggressive cancer. Here, we developed preclinical disease models and mined DSRCT expression profiles to identify genetic vulnerabilities that could be leveraged for new therapies. We describe four DSRCT cell lines and one patient-derived xenograft model. Transcriptomic, proteomic and biochemical profiling showed evidence of activation of the ERBB pathway. Ectopic expression of EWSR1-WT1 resulted in upregulation of ERRB family ligands. Treatment of DSRCT cell lines with ERBB ligands resulted in activation of EGFR, ERBB2, ERK1/2 and AKT, and stimulation of cell growth. Antagonizing EGFR function with shRNAs, small-molecule inhibitors (afatinib, neratinib) or an anti-EGFR antibody (cetuximab) inhibited proliferation of DSRCT cells. Finally, treatment of mice bearing DSRCT xenografts with a combination of cetuximab and afatinib significantly reduced tumor growth. These data provide a rationale for evaluating EGFR antagonists in patients with DSRCT. This article has an associated First Person interview with the joint first authors of the paper.
Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Animais , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Proteômica , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas WT1/uso terapêuticoRESUMO
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
RESUMO
PURPOSE: Desmoplastic small round cell tumor (DSRCT) is a highly lethal intra-abdominal sarcoma of adolescents and young adults. DSRCT harbors a t(11;22)(p13:q12) that generates the EWSR1-WT1 chimeric transcription factor, the key oncogenic driver of DSRCT. EWSR1-WT1 rewires global gene expression networks and activates aberrant expression of targets that together mediate oncogenesis. EWSR1-WT1 also activates a neural gene expression program. EXPERIMENTAL DESIGN: Among these neural markers, we found prominent expression of neurotrophic tyrosine kinase receptor 3 (NTRK3), a druggable receptor tyrosine kinase. We investigated the regulation of NTRK3 by EWSR1-WT1 and its potential as a therapeutic target in vitro and in vivo, the latter using novel patient-derived models of DSRCT. RESULTS: We found that EWSR1-WT1 binds upstream of NTRK3 and activates its transcription. NTRK3 mRNA is highly expressed in DSRCT compared with other major chimeric transcription factor-driven sarcomas and most DSRCTs are strongly immunoreactive for NTRK3 protein. Remarkably, expression of NTRK3 kinase domain mRNA in DSRCT is also higher than in cancers with NTRK3 fusions. Abrogation of NTRK3 expression by RNAi silencing reduces growth of DSRCT cells and pharmacologic targeting of NTRK3 with entrectinib is effective in both in vitro and in vivo models of DSRCT. CONCLUSIONS: Our results indicate that EWSR1-WT1 directly activates NTRK3 expression in DSRCT cells, which are dependent on its expression and activity for growth. Pharmacologic inhibition of NTRK3 by entrectinib significantly reduces growth of DSRCT cells both in vitro and in vivo, providing a rationale for clinical evaluation of NTRK3 as a therapeutic target in DSRCT.
Assuntos
Benzamidas/uso terapêutico , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Indazóis/uso terapêutico , Proteínas de Fusão Oncogênica/metabolismo , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Adolescente , Adulto , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Criança , Tumor Desmoplásico de Pequenas Células Redondas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Indazóis/farmacologia , Masculino , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Receptor trkC/genética , Receptor trkC/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto JovemRESUMO
Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell's (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.
Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama/radioterapia , Leptina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Comunicação Parácrina/efeitos da radiação , Receptores de Estrogênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose/efeitos da radiação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Dano ao DNA/efeitos da radiação , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/metabolismo , Leptina/genética , Células MCF-7 , Camundongos , Estresse Oxidativo/efeitos da radiação , RNA Interferente Pequeno , Radiação , Receptores Notch/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND & AIMS: Diminished forkhead box O3 (FOXO3) function drives inflammation and cancer growth; however, mechanisms fostering these pathobiologies are unclear. Here, we aimed to identify in colon loss of FOXO3-dependent cellular and molecular changes that facilitate inflammation-mediated tumor growth. METHODS: FOXO3 knockout (KO) and wild-type (WT) mice were used in the AOM/DSS model of inflammation-mediated colon cancer. Bioinformatics were used for profiling of mRNA sequencing data from human and mouse colon and tumors; specific targets were validated in human colon cancer cells (shFOXO3). RESULTS: In mice, FOXO3 deficiency led to significantly elevated colonic tumor burden (incidence and size) compared with WT (P < .05). In FOXO3 KO colon, activated molecular pathways overlapped with those associated with mouse and human colonic inflammation and cancer, especially human colonic tumors with inflammatory microsatellite instability (false discovery rate < 0.05). FOXO3 KO colon, similar to tumors, had increased neutrophils, macrophages, B cells, T cells, and decreased natural killer cells (false discovery rate < 0.05). Moreover, in KO colon differentially expressed transcripts were linked to activation of inflammatory nuclear factor kappa B, tumorigenic cMyc, and bacterial Toll-like receptor signaling. Among differentially expressed transcripts, we validated altered expression of integrin subunit alpha 2 (ITGA2), ADAM metallopeptidase with thrombospondin type 1 motif 12, and ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5 in mouse WT and FOXO3 KO colon and tumors (P < .05). Similarly, their altered expression was found in human inflammatory bowel disease and colon cancer tissues and linked to poor patient survival. Ultimately, in human colon cancer cells, FOXO3 knockdown (shFOXO3) led to significantly increased ITGA2, and silencing ITGA2 (siRNA) alone diminished cell growth. CONCLUSIONS: We identified the loss of FOXO3-mediated immune landscape, pathways, and transcripts that could serve as biomarkers and new targets for inflammatory colon cancer treatment.