RESUMO
BACKGROUND: Keratolytic winter erythema (KWE) or Oudtshoorn skin disease is a rare autosomal dominant monogenic disorder of epidermal keratinisation characterized clinically by cyclical peeling of the palms and soles. Due to a founder effect many KWE families have been identified in South Africa and the gene has been localized to 8p23.1-22, but the causal gene has yet to be identified. OBJECTIVE: To examine two compelling positional and functional candidate genes within the critical region on 8p: cathepsin B (CTSB), a lysosomal cysteine protease localized to pericellular spaces between keratinocytes, possibly playing a role in cell-cell adhesion; and farnesyl-diphosphate farnesyltransferase (FDFT1), a membrane-associated enzyme in cholesterol biosynthesis which, among its many functions, plays a role in barrier permeability and integrity. METHOD: Mutation screening of the coding regions, 5'UTRs and intron/exon boundaries of CTSB and FDFT1 in genomic DNA and cDNA of patients affected with KWE. Relative gene expression profiles of CTSB and FDFT1 in palmoplantar skin biopsies were assessed by real-time RT-PCR. RESULTS: No DNA variants that segregate exclusively with KWE were identified. There was no significant difference in the CTSB expression profiles but a trend towards increased expression of FDFT1 was observed in the skin of affected individuals (p=0.063). This observation prompted analysis of the FDFT1 promoter region; however, no genetic variants segregating with the KWE phenotype were observed and it is likely that the increased expression was triggered in response to skin inflammation and peeling. CONCLUSION: CTSB and FDFT1 are excluded as candidates for KWE.
Assuntos
Catepsina B/biossíntese , Eritema/genética , Farnesil-Difosfato Farnesiltransferase/biossíntese , Ceratose/genética , Dermatopatias Genéticas/genética , Regiões 5' não Traduzidas , Catepsina B/genética , Catepsina B/metabolismo , Adesão Celular , Cromossomos Humanos Par 8 , Análise Mutacional de DNA , Eritema/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Efeito Fundador , Perfilação da Expressão Gênica , Genes Dominantes , Variação Genética , Humanos , Ceratose/metabolismo , Modelos Genéticos , Mutação , Dermatopatias Genéticas/metabolismo , África do SulRESUMO
Familial primary localized cutaneous amyloidosis (FPLCA) is an autosomal-dominant disorder associated with chronic skin itching and deposition of epidermal keratin filament-associated amyloid material in the dermis. FPLCA has been mapped to 5p13.1-q11.2, and by candidate gene analysis, we identified missense mutations in the OSMR gene, encoding oncostatin M-specific receptor beta (OSMRbeta), in three families. OSMRbeta is a component of the oncostatin M (OSM) type II receptor and the interleukin (IL)-31 receptor, and cultured FPLCA keratinocytes showed reduced activation of Jak/STAT, MAPK, and PI3K/Akt pathways after OSM or IL-31 cytokine stimulation. The pathogenic amino acid substitutions are located within the extracellular fibronectin type III-like (FNIII) domains, regions critical for receptor dimerization and function. OSM and IL-31 signaling have been implicated in keratinocyte cell proliferation, differentiation, apoptosis, and inflammation, but our OSMR data in individuals with FPLCA represent the first human germline mutations in this cytokine receptor complex and provide new insight into mechanisms of skin itching.