Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Neurol ; 23(1): 193, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193998

RESUMO

BACKGROUND: Microglial activation contributes to both inflammatory damage and repair in experimental ischemic stroke. However, because of the logistical challenges, there have been few clinical imaging studies directly describing inflammatory activation and its resolution after stroke. The purpose of our pilot study was to describe the spatio-temporal profile of brain inflammation after stroke using 18kD translocator protein (TSPO) positron emission tomography (PET) with magnetic resonance (MR) co-registration in the subacute and chronic stage after stroke. METHODS: Three patients underwent magnetic resonance imaging (MRI) and PET scans with TSPO ligand [11C]PBR28 15 ± 3 and 90 ± 7 days after an ischaemic stroke. Regions of interest (ROI) were defined on MRI images and applied to the dynamic PET data to derive regional time-activity curves. Regional uptake was quantified as standardised uptake values (SUV) over 60 to 90 min post-injection. ROI analysis was applied to identify binding in the infarct, and in frontal, temporal, parietal, and occipital lobes and cerebellum excluding the infarcted area. RESULTS: The mean age of participants was 56 ± 20.4 years and mean infarct volume was 17.9 ± 18.1 ml. [11C]PBR28 showed increased tracer signal in the infarcted area compared to non-infarcted areas of the brain in the subacute phase of stroke (Patient 1 SUV 1.81; Patient 2 SUV 1.15; Patient 3 SUV 1.64). [11C]PBR28 uptake returned to the level of non-infarcted areas at 90 days Patient 1 SUV 0.99; Patient 3 SUV 0.80). No additional upregulation was detected elsewhere at either time point. CONCLUSIONS: The neuroinflammatory reaction after ischaemic stroke is limited in time and circumscribed in space suggesting that post-ischaemic inflammation is tightly controlled but regulatory mechanisms.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo , Projetos Piloto , Isquemia Encefálica/metabolismo , Doenças Neuroinflamatórias , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Proteínas de Transporte , Infarto
3.
Hum Mol Genet ; 27(18): 3257-3271, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29917075

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Biossíntese de Proteínas/genética , Proteômica , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Proteólise , Receptor IGF Tipo 2/genética , Transdução de Sinais
4.
J Biol Chem ; 289(2): 895-908, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24275654

RESUMO

Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and ß-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three ß-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of ß-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisina/química , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
5.
Trends Cell Biol ; 21(5): 257-65, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21306901

RESUMO

Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a major cause of Parkinson's disease. We contrast data suggesting that changes in LRRK2 activity cause alterations in mitogen-activated protein kinase, translational control, tumor necrosis factor α/Fas ligand and Wnt signaling pathways with the cell biological functions of LRRK2 such as vesicle trafficking. Despite scarce in vivo data on cell signaling, involvement in diverse cell biological functions suggests a role for LRRK2 as an upstream regulator in events leading to neurodegeneration. To stimulate discussion and give direction for future research, we further suggest that despite the importance of the catalytic activity for cytotoxicity, the main cellular function of LRRK2 is linked to assembly of signaling complexes.


Assuntos
Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Fatores de Necrose Tumoral/metabolismo , Proteínas Wnt/metabolismo
6.
J Neurochem ; 116(2): 304-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21073465

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease. The LRRK2 gene encodes a Roco protein featuring a Ras of complex proteins (ROC) GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay, we demonstrated that the intra-molecular ROC : COR interaction is favoured over ROC : ROC dimerization. Interestingly, the intra-molecular ROC : COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC : COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC : COR interface, strengthens the intra-molecular ROC : COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.


Assuntos
Mutação , Proteínas Serina-Treonina Quinases/genética , Domínio Catalítico/genética , Cisteína/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Ligação Proteica/genética , Multimerização Proteica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/genética
7.
J Neurochem ; 98(1): 156-69, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16805805

RESUMO

Following our identification of PTEN-induced putative kinase 1 (PINK1) gene mutations in PARK6-linked Parkinson's disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG-132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas Quinases/metabolismo , Estresse Fisiológico/metabolismo , Animais , Western Blotting/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Linhagem Celular , Clonagem Molecular/métodos , Cricetinae , Inibidores de Cisteína Proteinase/farmacologia , Inibidores Enzimáticos/farmacologia , Imunofluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leupeptinas/farmacologia , Microscopia Imunoeletrônica/métodos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/genética , Estresse Fisiológico/induzido quimicamente , Transfecção/métodos
8.
Neurobiol Dis ; 20(2): 401-11, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15894486

RESUMO

Lewy bodies (LBs) are the characteristic inclusions of Parkinson's disease brain but the mechanism responsible for their formation is obscure. Lewy bodies (LBs) are composed of a number of proteins of which alpha-synuclein (alpha-SYN) is a major constituent. In this study, we have investigated the distribution patterns of synphilin-1 and parkin proteins in control and sporadic PD brain tissue by immunohistochemistry (IH), immunoblotting, and immunoelectron microscopy (IEM). We demonstrate the presence of synphilin-1 and parkin in the central core of a majority of LBs using IH and IEM. Using IH, we show an overlapping distribution profile of the two proteins in central neurons. Additionally, we show sensitivity of both endogenous synphilin-1 and parkin to proteolytic dysfunction and their co-localization in aggresomes formed in response to the proteasome inhibitor MG-132. We confirm that synphilin-1 and parkin are components of majority of LBs in Parkinson's disease and that both proteins are susceptible to proteasomal degradation.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Corpos de Lewy/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Encéfalo/fisiopatologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Imuno-Histoquímica , Corpos de Lewy/patologia , Corpos de Lewy/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteassoma , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/fisiopatologia
9.
Science ; 304(5672): 884-7, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15131310

RESUMO

Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.


Assuntos
Dinoprostona/metabolismo , Inflamação/fisiopatologia , Dor/fisiopatologia , Células do Corno Posterior/metabolismo , Receptores de Glicina/metabolismo , Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/administração & dosagem , Dinoprostona/farmacologia , Feminino , Adjuvante de Freund , Glicina/metabolismo , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Receptores de Glicina/química , Receptores de Glicina/genética , Transdução de Sinais , Transmissão Sináptica , Transfecção , Zimosan
10.
Science ; 304(5674): 1158-60, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15087508

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6). Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6. We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid. Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress. These data provide a direct molecular link between mitochondria and the pathogenesis of PD.


Assuntos
Mitocôndrias/metabolismo , Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Células COS , Linhagem Celular Tumoral , Códon sem Sentido , Éxons , Humanos , Leupeptinas/farmacologia , Potenciais da Membrana , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neurônios/metabolismo , Neurônios/fisiologia , Estresse Oxidativo , Doença de Parkinson/enzimologia , Doença de Parkinson/metabolismo , Proteínas Quinases/química , Estrutura Terciária de Proteína , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA