Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(50): 14366-14371, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-28182563

RESUMO

X-chromosome inactivation is a mechanism of dosage compensation in which one of the two X chromosomes in female mammals is transcriptionally silenced. Once established, silencing of the inactive X (Xi) is robust and difficult to reverse pharmacologically. However, the Xi is a reservoir of >1,000 functional genes that could be potentially tapped to treat X-linked disease. To identify compounds that could reactivate the Xi, here we screened ∼367,000 small molecules in an automated high-content screen using an Xi-linked GFP reporter in mouse fibroblasts. Given the robust nature of silencing, we sensitized the screen by "priming" cells with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5azadC). Compounds that elicited GFP activity include VX680, MLN8237, and 5azadC, which are known to target the Aurora kinase and DNA methylation pathways. We demonstrate that the combinations of VX680 and 5azadC, as well as MLN8237 and 5azadC, synergistically up-regulate genes on the Xi. Thus, our work identifies a synergism between the DNA methylation and Aurora kinase pathways as being one of interest for possible pharmacological reactivation of the Xi.


Assuntos
Aurora Quinases/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Inativação do Cromossomo X/efeitos dos fármacos , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Aurora Quinases/genética , Azacitidina/administração & dosagem , Azacitidina/análogos & derivados , Azepinas/administração & dosagem , Linhagem Celular , Decitabina , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Técnicas de Silenciamento de Genes , Genes Ligados ao Cromossomo X , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Transgênicos , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Cromossomo X/efeitos dos fármacos , Cromossomo X/genética
2.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24161946

RESUMO

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Leucemia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/fisiologia
3.
J Biomol Screen ; 17(4): 509-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156222

RESUMO

A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Ilhotas Pancreáticas/citologia , Cultura Primária de Células/métodos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
4.
Traffic ; 7(5): 524-37, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16643276

RESUMO

We investigated potential roles of cytoplasmic dynein in organizing axonal microtubules either by depleting dynein heavy chain from cultured neurons or by experimentally disrupting dynactin. The former was accomplished by siRNA while the latter was accomplished by overexpressing P50-dynamitin. Both methods resulted in a persistent reduction in the frequency of transport of short microtubules. To determine if the long microtubules in the axon also undergo dynein-dependent transport, we ascertained the rates of EGFP-EB3 "comets" observed at the tips of microtubules during assembly. The rates of the comets, in theory, should reflect a combination of the assembly rate and any potential transport of the microtubule. Comets were initially slowed during P50-dynamitin overexpression, but this effect did not persist beyond the first day and was never observed in dynein-depleted axons. In fact, the rates of the comets were slightly faster in dynein-depleted axons. We conclude that the transient effect of P50-dynamitin overexpression reflects a reduction in microtubule polymerization rates. Interestingly, after prolonged dynein depletion, the long microtubules were noticeably misaligned in the distal regions of axons and failed to enter the filopodia of growth cones. These results suggest that the forces generated by cytoplasmic dynein do not transport long microtubules, but may serve to align them with one another and also permit them to invade filopodia.


Assuntos
Axônios/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Células Cultivadas , Complexo Dinactina , Dineínas/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Ratos
5.
Neuroscientist ; 12(2): 107-18, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16514008

RESUMO

Microtubules are transported down the axon as short pieces by molecular motor proteins. One popular idea is that these microtubules are transported by forces generated against the actin cytoskeleton. The motor for such transport is thought to be cytoplasmic dynein. Here, the authors review this model and discuss recent studies that sought to test it. These studies suggest that the model is valid but incomplete. Microtubule transport is bidirectional and can utilize either actin filaments or longer microtubules as a substrate in the anterograde direction but only longer microtubules in the retrograde direction. Cytoplasmic dynein is one participating motor but not the only one. The authors speculate that the category of anterograde microtubule transport that involves actin filaments may have specialized functions. The relevant forces that transport short microtubules may also be crucial for the manner by which the longer immobile microtubules interact with actin filaments during events such as axonal retraction and growth cone turning.


Assuntos
Citoesqueleto de Actina/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/fisiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Axônios/ultraestrutura , Diferenciação Celular/fisiologia , Dineínas/metabolismo , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Humanos , Microtúbulos/ultraestrutura , Modelos Biológicos
6.
Cell Motil Cytoskeleton ; 58(1): 10-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14983520

RESUMO

Terminally postmitotic neurons continue to express many of the kinesin-related proteins known to configure microtubules during mitosis. Drugs that inhibit these kinesins are being developed as anti-cancer agents with the hope that they will inhibit proliferation of tumor cells without having adverse effects on the nervous system. The prototype, termed monastrol, inhibits the kinesin known as Eg5, which is essential for maintaining separation of the half-spindles. Eg5 is also highly expressed in neurons, particularly during development. Exposure of cultured sympathetic neurons to monastrol for a few hours increased both the number and the growth rate of the axons. With additional time, the overall lengths of the axons were indistinguishable from controls. Sensory neurons showed a similar short-term increase in axonal growth rate. However, prolonged exposure resulted in shorter axons, suggesting that sensory neurons may be more sensitive to toxic effects of the drug. Nevertheless, the overall health of the cultures was still far more robust than cultures treated with taxol, a drug commonly used for anti-cancer therapy. On the basis of these results, we conclude that Eg5 normally generates forces that oppose axonal growth, presumably by partially suppressing the forward advance of microtubules. We speculate that local regulation of Eg5 could be a means by which neurons coordinate rapid bursts of axonal growth with appropriate environmental cues. The comparatively modest toxic effects on the neurons over time are a hopeful sign for clinicians interested in using anti-Eg5 drugs for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Axônios/efeitos dos fármacos , Cinesinas/antagonistas & inibidores , Neurônios/enzimologia , Pirimidinas/farmacologia , Tionas/farmacologia , Animais , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Mitose/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/enzimologia , Neurônios Aferentes/fisiologia , Paclitaxel/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA