Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 859, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066934

RESUMO

BACKGROUND: Doxorubicin (DOX) is a potent chemotherapy widely used in treating various neoplastic diseases. However, the clinical use of DOX is limited due to its potential toxic effect on the cardiovascular system. Thus, identifying the pathway involved in this toxicity may help minimize chemotherapy risk and improve cancer patients' quality of life. Recent studies suggest that Endothelial-to-Mesenchymal transition (EndMT) and endothelial toxicity contribute to the pathogenesis of DOX-induced cardiovascular toxicity. However, the molecular mechanism is yet unknown. Given that arachidonic acid and associated cytochrome P450 (CYP) epoxygenase have been involved in endothelial and cardiovascular function, we aimed to examine the effect of suppressing CYP epoxygenases on DOX-induced EndMT and cardiovascular toxicity in vitro and in vivo. METHODS AND RESULTS: To test this, human endothelial cells were treated with DOX, with or without CYP epoxygenase inhibitor, MSPPOH. We also investigated the effect of MSPPOH on the cardiovascular system in our zebrafish model of DOX-induced cardiotoxicity. Our results showed that MSPPOH exacerbated DOX-induced EndMT, inflammation, oxidative stress, and apoptosis in our endothelial cells. Furthermore, we also show that MSPPOH increased cardiac edema, lowered vascular blood flow velocity, and worsened the expression of EndMT and cardiac injury markers in our zebrafish model of DOX-induced cardiotoxicity. CONCLUSION: Our data indicate that a selective CYP epoxygenase inhibitor, MSPPOH, induces EndMT and endothelial toxicity to contribute to DOX-induced cardiovascular toxicity.


Assuntos
Cardiotoxicidade , Sistema Enzimático do Citocromo P-450 , Doxorrubicina , Transição Epitelial-Mesenquimal , Estresse Oxidativo , Peixe-Zebra , Doxorrubicina/efeitos adversos , Animais , Humanos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo
2.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184222

RESUMO

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Xenoenxertos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Materials (Basel) ; 15(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683259

RESUMO

Tyrosine kinase inhibitors (TKIs) are the new generation of anti-cancer drugs with high potential against cancer cells' proliferation and growth. However, TKIs are associated with severe cardiotoxicity, limiting their clinical value. One TKI that has been developed recently but not explored much is Ponatinib. The use of nanoparticles (NPs) as a better therapeutic agent to deliver anti-cancer drugs and reduce their cardiotoxicity has been recently considered. In this study, with the aim to reduce Ponatinib cardiotoxicity, Poly(D,L-lactide-co-glycolide)-b-poly(ethyleneoxide)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was used to synthesize Ponatinib in loaded PLGA-PEG-PLGA NPs for chronic myeloid leukemia (CML) treatment. In addition to physicochemical NPs characterization (NPs shape, size, size distribution, surface charge, dissolution rate, drug content, and efficacy of encapsulation) the efficacy and safety of these drug-delivery systems were assessed in vivo using zebrafish. Zebrafish are a powerful animal model for investigating the cardiotoxicity associated with anti-cancer drugs such as TKIs, to determine the optimum concentration of smart NPs with the least side effects, and to generate a xenograft model of several cancer types. Therefore, the cardiotoxicity of unloaded and drug-loaded PLGA-PEG-PLGA NPs was studied using the zebrafish model by measuring the survival rate and cardiac function parameters, and therapeutic concentration for in vivo efficacy studies was optimized in an in vivo setting. Further, the efficacy of drug-loaded PLGA-PEG-PLGA NPs was tested on the zebrafish cancer xenograft model, in which human myelogenous leukemia cell line K562 was transplanted into zebrafish embryos. Our results demonstrated that the Ponatinib-loaded PLGA-PEG-PLGA NPs at a concentration of 0.001 mg/mL are non-toxic/non-cardio-toxic in the studied zebrafish xenograft model.

4.
J Skin Cancer ; 2022: 6989827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198247

RESUMO

INTRODUCTION: Skin cancer is one of the most growing types of cancer, especially in the Mediterranean, even though it is a preventable disease. The purpose of this study is to assess medical students' knowledge, attitude, and practice about skin cancer prevention and detection. METHODS: A cross-sectional study was conducted using a validated structured questionnaire covering the areas of knowledge, attitude, and practice of the study participants. RESULTS: The study involved 1530 students; 55.3% were females. Most of the students possessed proper knowledge about skin cancer (81%). The most prevalent skin cancer risk factors were sun exposure during the day (83.5%) and immunosuppression (71.2%). More than half of the students did not have any habits of skin examination (61.5%). 20% of the students never used sunscreen, while only 20% of them avoided sun exposure during day hours. CONCLUSION: The general level of the medical students' knowledge of skin cancer and its risk factors appeared to be higher than what is found in other studies; it is reasonable as the study participants were medical students. However, the protective behavior from the sun was inadequate when compared to the level of knowledge reported. Additional education about the behavior toward sun exposure and protection against skin cancer may be needed to be implemented in the dermatology curriculum.

5.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34296297

RESUMO

Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub­pathways in PTP1B­mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress­mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4­dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress­induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase­12 and poly (ADP­Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress­mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.


Assuntos
Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
6.
Indian J Dent Res ; 29(6): 787-793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589009

RESUMO

BACKGROUND: Biodentine™ is relatively a new tricalcium silicate cement that has gained great attention of the researchers due to its biological potential in comparison with other materials. The aim of this study was to investigate the optimum concentrations of Biodentine in relation to its stimulatory or inhibitory effect on proliferation, migration and adhesion of stem cells of human exfoliated deciduous teeth (SHED). The cell cultures of SHED were treated with Biodentine™ extract at four different concentrations; 20mg/ml, 2mg/ml, 0.2mg/ml and 0.02mg/ml. Cells cultured without Biodentine™ were kept as a blank control. The proliferation potential of SHED cells was evaluated by MTT viability analysis for 6 days. Migration potential was investigated by wound healing and transwell migration assays. The growth, survival and communication potential of these cells was determined by Adhesion assay. RESULTS: A significant increase was observed in the proliferation and migration of SHED at (2mg/ml, 0.2mg/ml and 0.02mg/ml) while higher concentration of Biodentine™ (20mg/ml) exhibited cytotoxic effect on the cells. However, three tested Biodentine™ concentrations were similar in effect (non-significant) to adhesion ability of cells when compared with blank control. CONCLUSION: Our findings suggest that lower concentrations of Biodentine™ can be considered as the optimum concentrations to enhance the stimulatory effect of Biodentine on SHED.


Assuntos
Compostos de Cálcio/farmacologia , Polpa Dentária/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Agentes de Capeamento da Polpa Dentária e Pulpectomia/farmacologia , Silicatos/farmacologia , Dente Decíduo/citologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Masculino , Estimulação Química , Esfoliação de Dente
7.
BMC Cell Biol ; 14: 45, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093776

RESUMO

BACKGROUND: ADF/cofilin proteins are key modulators of actin dynamics in metastasis and invasion of cancer cells. Here we focused on the roles of ADF and cofilin-1 individually in the development of polarized migration of rat mammary adenocarcinoma (MTLn3) cells, which express nearly equal amounts of each protein. Small interference RNA (siRNA) technology was used to knockdown (KD) the expression of ADF and cofilin-1 independently. RESULTS: Either ADF KD or cofilin KD caused cell elongation, a reduction in cell area, a decreased ability to form invadopodia, and a decreased percentage of polarized cells after 180 s of epidermal growth factor stimulation. Moreover, ADF KD or cofilin KD increased the rate of cell migration and the time of lamellipodia protrusion but through different mechanisms: lamellipodia protrude more frequently in ADF KD cells and are more persistent in cofilin KD cells. ADF KD cells showed a significant increase in F-actin aggregates, whereas cofilin KD cells showed a significant increase in prominent F-actin bundles and increased cell adhesion. Focal adhesion area and cell adhesion in cofilin KD cells were returned to control levels by expressing exogenous cofilin but not ADF. Return to control rates of cell migration in ADF KD cells was achieved by expression of exogenous ADF but not cofilin, whereas in cofilin KD cells, expression of cofilin efficiently rescued control migration rates. CONCLUSION: Although ADF and cofilin have many redundant functions, each of these isoforms has functional differences that affect F-actin structures, cell adhesion and lamellipodial dynamics, all of which are important determinants of cell migration.


Assuntos
Actinas/metabolismo , Adenocarcinoma/metabolismo , Cofilina 1/genética , Destrina/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular , Cofilina 1/antagonistas & inibidores , Cofilina 1/metabolismo , Destrina/antagonistas & inibidores , Destrina/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Metástase Neoplásica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA