Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 17(9): e202100755, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073610

RESUMO

Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.


Assuntos
Inibidores de Histona Desacetilases , Peptoides , Histona Desacetilase 1 , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Peptoides/química
2.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830078

RESUMO

Tumor cell crosstalk with platelets and, subsequently, their activation are key steps in hematogenous tumor metastasis. MACC1 is an oncogene involved in molecular pathogenesis of colorectal cancer (CRC) and other solid tumor entities, mediating motility and metastasis, making MACC1 an accepted prognostic biomarker. However, the impact of MACC1 on platelet activation has not yet been addressed. Here, we investigated the activation of platelets by human CRC cells upon MACC1 modulation, indicated by platelet aggregation and granule release. These approaches led to the identification of insulin-like growth factor binding protein-2 (IGFBP2) as a functional downstream molecule of MACC1, affecting communication with platelets. This was confirmed by an shRNA-mediated IGFBP2 knockdown, while maintaining MACC1 activity. Although IGFBP2 displayed an attenuated platelet activation potential, obviously by scavenging IGF-I as a platelet costimulatory mediator, the MACC1/IGFBP2 axis did not affect the thrombin formation potential of the cells. Furthermore, the IGFBP2/MACC1-driven cell migration and invasiveness was further accelerated by platelets. The key role of IGFBP2 for the metastatic spread in vivo was confirmed in a xenograft mouse model. Data provide evidence for IGFBP2 as a downstream functional component of MACC1-driven metastasis, linking these two accepted oncogenic biomarkers for the first time in a platelet context.


Assuntos
Plaquetas/metabolismo , Comunicação Celular , Neoplasias Colorretais/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transativadores/metabolismo , Animais , Plaquetas/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica
3.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805059

RESUMO

Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.


Assuntos
Selectina-P/química , Neoplasias Pancreáticas/metabolismo , Ativação Plaquetária , Trombina/química , Trombose Venosa/metabolismo , Plaquetas/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Adesividade Plaquetária , Agregação Plaquetária , Fatores de Risco , Trombofilia , Tromboplastina/metabolismo , Trombose Venosa/complicações , Neoplasias Pancreáticas
4.
Chem Sci ; 11(13): 3474-3486, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33133483

RESUMO

Cyclin-dependent kinase 6 (CDK6) is an important regulator of the cell cycle. Together with CDK4, it phosphorylates and inactivates retinoblastoma (Rb) protein. In tumour cells, CDK6 is frequently upregulated and CDK4/6 kinase inhibitors like palbociclib possess high activity in breast cancer and other malignancies. Besides its crucial catalytic function, kinase-independent roles of CDK6 have been described. Therefore, targeted degradation of CDK6 may be advantageous over kinase inhibition. Proteolysis targeting chimeras (PROTACs) structurally based on the cereblon (CRBN) ligand thalidomide have recently been described to degrade the targets CDK4/6. However, CRBN-based PROTACs have several limitations including the remaining activity of immunomodulatory drugs (IMiDs) on Ikaros transcription factors as well as CRBN inactivation as a resistance mechanism in cancer. Here, we systematically explored the chemical space of CDK4/6 PROTACs by addressing different E3 ligases and connecting their respective small-molecule binders via various linkers to palbociclib. The spectrum of CDK6-specific PROTACs was extended to von Hippel Lindau (VHL) and cellular inhibitor of apoptosis protein 1 (cIAP1) that are essential for most cancer cells and therefore less likely to be inactivated. Our VHL-based PROTAC series included compounds that were either specific for CDK6 or exhibited dual activity against CDK4 and CDK6. IAP-based PROTACs caused a combined degradation of CDK4/6 and IAPs resulting in synergistic effects on cancer cell growth. Our new degraders showed potent and long-lasting degrading activity in human and mouse cells and inhibited proliferation of several leukemia, myeloma and breast cancer cell lines. In conclusion, we show that VHL- and IAP-based PROTACs are an attractive approach for targeted degradation of CDK4/6 in cancer.

5.
PLoS One ; 13(1): e0191303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29346400

RESUMO

Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner.


Assuntos
Plaquetas/efeitos dos fármacos , Quimiocina CXCL5/metabolismo , Heparina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta-Tromboglobulina/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/fisiologia , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Ativação Plaquetária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA