Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 203(5): 585-593, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33023304

RESUMO

Rationale: We previously reported that ivacaftor was safe and well tolerated in cohorts aged 12 to <24 months with cystic fibrosis and gating mutations in the ARRIVAL study; here, we report results for cohorts aged 4 to <12 months.Objectives: To evaluate the safety, pharmacokinetics, and pharmacodynamics of ivacaftor in infants aged 4 to <12 months with one or more gating mutations.Methods: ARRIVAL is a single-arm phase 3 study. Infants received 25 mg or 50 mg ivacaftor every 12 hours on the basis of age and weight for 4 days in part A and 24 weeks in part B.Measurements and Main Results: Primary endpoints were safety (parts A and B) and pharmacokinetics (part A). Secondary/tertiary endpoints (part B) included pharmacokinetics and changes in sweat chloride levels, growth, and markers of pancreatic function. Twenty-five infants received ivacaftor, 12 in part A and 17 in part B (four infants participated in both parts). Pharmacokinetics was consistent with that in older groups. Most adverse events were mild or moderate. In part B, cough was the most common adverse event (n = 10 [58.8%]). Five infants (part A, n = 1 [8.3%]; part B, n = 4 [23.5%]) had serious adverse events, all of which were considered to be not or unlikely related to ivacaftor. No deaths or treatment discontinuations occurred. One infant (5.9%) experienced an alanine transaminase elevation >3 to ≤5× the upper limit of normal at Week 24. No other adverse trends in laboratory tests, vital signs, or ECG parameters were reported. Sweat chloride concentrations and measures of pancreatic obstruction improved.Conclusions: This study of ivacaftor in the first year of life supports treating the underlying cause of cystic fibrosis in children aged ≥4 months with one or more gating mutations.Clinical trial registered with clinicaltrials.gov (NCT02725567).


Assuntos
Aminofenóis/uso terapêutico , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/tratamento farmacológico , Quinolonas/uso terapêutico , Aminofenóis/farmacocinética , Agonistas dos Canais de Cloreto/farmacocinética , Cloretos/metabolismo , Tosse/epidemiologia , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Insuficiência Pancreática Exócrina/metabolismo , Feminino , Febre/epidemiologia , Genótipo , Humanos , Lactente , Ativação do Canal Iônico/genética , Masculino , Mutação , Otite Média/epidemiologia , Elastase Pancreática/metabolismo , Quinolonas/farmacocinética , Infecções Respiratórias/epidemiologia , Rinorreia/epidemiologia , Suor/metabolismo , Resultado do Tratamento , Vômito/epidemiologia
2.
J Cyst Fibros ; 20(1): 68-77, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32967799

RESUMO

BACKGROUND: The CFTR modulator tezacaftor/ivacaftor was efficacious and generally safe and well tolerated in Phase 3 studies in participants ≥12 years of age with cystic fibrosis (CF) homozygous for the F508del-CFTR mutation or heterozygous with a residual function-CFTR mutation (F/F or F/RF respectively). We evaluated tezacaftor/ivacaftor's efficacy and safety over 8 weeks in participants 6 through 11 years of age with these mutations. METHODS: Participants were randomized 4:1 to tezacaftor/ivacaftor or a blinding group (placebo for F/F, ivacaftor for F/RF). The primary endpoint was within-group change from baseline in the lung clearance index 2·5 (LCI2·5) through Week 8. Secondary endpoints were change from baseline in sweat chloride (SwCl), cystic fibrosis questionnaire-revised (CFQ-R) respiratory domain score, and safety. RESULTS: Sixty-seven participants received at least one study drug dose. Of those, 54 received tezacaftor/ivacaftor (F/F, 42; F/RF, 12), 10 placebo, and 3 ivacaftor; 66 completed the study. The within-group change in LCI2·5 was significantly reduced (improved) by -0·51 (95% CI: -0·74, -0·29). SwCl concentration decreased (improved) by -12·3 mmol/L and CFQ-R respiratory domain score increased (improved, nonsignificantly) by 2·3 points. There were no serious adverse events (AEs) or AEs leading to tezacaftor/ivacaftor discontinuation or interruption. The most common AEs (≥10%) in participants receiving tezacaftor/ivacaftor were cough, headache, and productive cough. CONCLUSIONS: Tezacaftor/ivacaftor improved lung function (assessed using LCI) and CFTR function (measured by SwCl concentration) in participants 6 through 11 years of age with F/F or F/RF genotypes. Tezacaftor/ivacaftor was safe and well tolerated; no new safety concerns were identified.


Assuntos
Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Agonistas dos Canais de Cloreto/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Indóis/administração & dosagem , Mutação , Quinolonas/administração & dosagem , Aminofenóis/efeitos adversos , Benzodioxóis/efeitos adversos , Criança , Agonistas dos Canais de Cloreto/efeitos adversos , Fibrose Cística/fisiopatologia , Combinação de Medicamentos , Feminino , Heterozigoto , Homozigoto , Humanos , Indóis/efeitos adversos , Masculino , Quinolonas/efeitos adversos , Resultado do Tratamento
4.
Pulm Ther ; 6(2): 275-286, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734574

RESUMO

INTRODUCTION: The triple-combination (TC) cystic fibrosis transmembrane conductance regulator (CFTR) modulator regimen elexacaftor, tezacaftor, and ivacaftor was shown to be safe and efficacious in phase 3 trials of people with cystic fibrosis (pwCF) ≥ 12 years of age with ≥ 1 F508del-CFTR allele. Here, a simulation study predicted ivacaftor, tezacaftor, and elexacaftor exposures and impacts on CFTR modulation following transition from ivacaftor [a cytochrome P450 3A (CYP3A) substrate], lumacaftor (a CYP3A inducer)/ivacaftor, or tezacaftor/ivacaftor to TC. METHODS: Physiologically based pharmacokinetic (PBPK) modeling was used to evaluate plasma exposures during transition from mono- or dual-combination CFTR modulator regimens to TC. PBPK models were parameterized using data from human hepatocytes to account for CYP3A induction by lumacaftor and validated to match clinical data from healthy volunteers and pwCF. Using dosing regimens for pwCF ≥ 12 years of age, simulations were performed for ivacaftor, lumacaftor/ivacaftor, and tezacaftor/ivacaftor dosing for 14 days followed by immediate transition to elexacaftor/tezacaftor/ivacaftor dosing for 14 days. Drug exposures during transitions were compared with respective half-maximal effective concentrations (EC50) estimated from efficacy endpoint data from clinical studies. RESULTS: In simulations of immediate transition from ivacaftor or tezacaftor/ivacaftor to TC, the preceding treatment had no impact on ivacaftor, tezacaftor, or elexacaftor exposures. In simulations of immediate transition from lumacaftor/ivacaftor to TC, ivacaftor exposure decreased to 64% of maximum effective concentration (EC), due to reduction in ivacaftor dose and residual CYP3A4 induction, then returned to 90-95% of maximum EC. Lumacaftor-mediated CYP3A induction resolved within approximately 2 weeks. In all simulations, ivacaftor, tezacaftor, and elexacaftor exposures approached steady state within 2 weeks following transition and, at all times, ivacaftor and ≥ 1 CFTR corrector remained above EC50. CONCLUSION: PBPK modeling indicates that immediate transition to the elexacaftor/tezacaftor/ivacaftor regimen from an ivacaftor, lumacaftor/ivacaftor, or tezacaftor/ivacaftor regimen results in sustained CFTR modulation in pwCF ≥ 12 years of age.

5.
J Cyst Fibros ; 18(5): 708-713, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31253540

RESUMO

BACKGROUND: Tezacaftor/ivacaftor is a new treatment option in many regions for patients aged ≥12 years who are homozygous (F/F) or heterozygous for the F508del-CFTR mutation and a residual function (F/RF) mutation. This Phase 3, 2-part, open-label study evaluated the pharmacokinetics (PK), safety, tolerability, and efficacy of tezacaftor/ivacaftor in children aged 6 through 11 years with these mutations. METHODS: Part A informed weight-based tezacaftor/ivacaftor dosages for part B. The primary objective of part B was to evaluate the safety and tolerability of tezacaftor/ivacaftor through 24 weeks; the secondary objective was to evaluate efficacy based on changes from baseline in percentage predicted forced expiratory volume in 1 s (ppFEV1), growth parameters, sweat chloride, and the Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. RESULTS: After PK analysis in part A, 70 children received ≥1 dose of tezacaftor/ivacaftor in part B; 67 children completed treatment. Exposures in children aged 6 through 11 years were within the target range for those observed in patients aged ≥12 years. The safety profile of tezacaftor/ivacaftor was generally similar to prior studies in patients aged ≥12 years. One child discontinued treatment for a serious adverse event of constipation. Tezacaftor/ivacaftor treatment improved sweat chloride levels and CFQ-R respiratory domain scores, mean ppFEV1 remained stable in the normal range, and growth parameters remained stable over 24 weeks. CONCLUSIONS: Tezacaftor/ivacaftor was generally safe and well tolerated, and improved CFTR function in children aged 6 through 11 years with CF with F/F and F/RF genotypes, supporting tezacaftor/ivacaftor use in this age group. NCT02953314.


Assuntos
Aminofenóis , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Indóis , Quinolonas , Testes de Função Respiratória/métodos , Suor , Aminofenóis/administração & dosagem , Aminofenóis/efeitos adversos , Aminofenóis/farmacocinética , Benzodioxóis/administração & dosagem , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Disponibilidade Biológica , Criança , Pré-Escolar , Agonistas dos Canais de Cloreto/administração & dosagem , Agonistas dos Canais de Cloreto/efeitos adversos , Agonistas dos Canais de Cloreto/farmacocinética , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada/métodos , Feminino , Humanos , Indóis/administração & dosagem , Indóis/efeitos adversos , Indóis/farmacocinética , Masculino , Mutação , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Quinolonas/farmacocinética , Suor/química , Suor/efeitos dos fármacos , Resultado do Tratamento
6.
Bull Math Biol ; 70(6): 1730-48, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18437499

RESUMO

Although many tools of cellular and molecular biology have been used to characterize single intracellular cycles of virus growth, few culture methods exist to study the dynamics of spatially spreading viruses over multiple generations. We have previously developed a method that addresses this need by tracking the spread of focal infections using immunocytochemical labeling and digital imaging. Here, we build reaction-diffusion models to account for spatio-temporal patterns formed by the spreading viral infection front as well as data from a single cycle of virus growth (one-step growth). Systems with and without the interferon-mediated antiviral response of the host cells are considered. Dynamic images of the spreading infections guide iterative model refinement steps that lead to reproduction of all of the salient features contained in the images, not just the velocity of the infection front. The optimal fits provide estimates for key parameters such as virus-host binding and the production rate of interferon. For the examined data, highly-lumped infection models that ignore the one-step growth dynamics provide a comparable fit to models that more accurately account for these dynamics, highlighting the fact that increased model complexity does not necessarily translate to improved fit. This work demonstrates how model building can facilitate the interpretation of experiments by highlighting contributions from both biological and methodological factors.


Assuntos
Células Eucarióticas/virologia , Modelos Biológicos , Vírus/crescimento & desenvolvimento , Algoritmos , Animais , Antivirais/imunologia , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Cricetinae , Células Eucarióticas/imunologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Interferons/imunologia , Interferons/metabolismo , Cinética , Microscopia de Fluorescência , Ligação Proteica , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/imunologia , Vesiculovirus/metabolismo , Vírus/imunologia , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA