Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(535)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188720

RESUMO

Danon disease (DD) is a rare X-linked autophagic vacuolar myopathy associated with multiorgan dysfunction, including the heart, skeletal muscle, and liver. There are no specific treatments, and most male patients die from advanced heart failure during the second or third decade of life. DD is caused by mutations in the lysosomal-associated membrane protein 2 (LAMP2) gene, a key mediator of autophagy. LAMP2 has three isoforms: LAMP2A, LAMP2B, and LAMP2C. LAMP2B is the predominant isoform expressed in cardiomyocytes. This study evaluates the efficacy of human LAMP2B gene transfer using a recombinant adeno-associated virus 9 carrying human LAMP2B (AAV9.LAMP2B) in a Lamp2 knockout (KO) mouse, a DD model. AAV9.LAMP2B was intravenously injected into 2- and 6-month-old Lamp2 KO male mice to assess efficacy in adolescent and adult phenotypes. Lamp2 KO mice receiving AAV9.LAMP2B demonstrated dose-dependent restoration of human LAMP2B protein in the heart, liver, and skeletal muscle tissue. Impaired autophagic flux, evidenced by increased LC3-II, was abrogated by LAMP2B gene transfer in all tissues in both cohorts. Cardiac function was also improved, and transaminases were reduced in AAV9.LAMP2B-treated KO mice, indicating favorable effects on the heart and liver. Survival was also higher in the older cohort receiving high vector doses. No anti-LAMP2 antibodies were detected in mice that received AAV9.LAMP2B. In summary, LAMP2B gene transfer improves metabolic and physiologic function in a DD murine model, suggesting that a similar therapeutic approach may be effective for treating patients with this highly morbid disease.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Adolescente , Animais , Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo IIb/genética , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Masculino , Camundongos , Camundongos Knockout , Fenótipo
2.
Curr Cardiol Rep ; 19(3): 26, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28251514

RESUMO

PURPOSE OF REVIEW: The aim of this study is to review the published human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models of cardiac storage disorders and to evaluate the limitations and future applications of this technology. RECENT FINDINGS: Several cardiac storage disorders (CSDs) have been modeled using patient-specific hiPSC-CMs, including Anderson-Fabry disease, Danon disease, and Pompe disease. These models have shown that patient-specific hiPSC-CMs faithfully recapitulate key phenotypic features of CSDs and respond predictably to pharmacologic manipulation. hiPSC-CMs generated from patients with CSDs are representative models of the patient disease state and can be used as an in vitro system for the study of human cardiomyocytes. While these models suffer from several limitations, they are likely to play an important role in future mechanistic studies of cardiac storage disorders and the development of targeted therapeutics for these diseases.


Assuntos
Cardiopatias/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Erros Inatos do Metabolismo/patologia , Miócitos Cardíacos/patologia , Doença de Fabry , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Mucopolissacaridoses/patologia , Esfingolipidoses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA