Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Control Release ; 346: 355-357, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483640

RESUMO

To honor the contributions of Professor Hiroshi Maeda to the progress of targeted drug delivery research, a brief review of enhanced permeability and retention (EPR) effect theory proposed by him as the physiology-based principal mechanism of intra-tumoral accumulation of large molecules and small particles is presented. Under historical and practical backgrounds in developments of various drug delivery systems including macromolecular conjugates, the concept of EPR effect was advocated in mid1980s and has cultivated new cancer chemotherapeutic modalities until recently. Namely, nanoplatforms such as polymer conjugates, liposomes, polymeric micelles, and nanoparticles have been studied as a promising fusion area for nanotechnology and medicine. Modulation of EPR effect by chemical and/or mechanical approaches to achieve tumor vascular and tissue modification would further lead to sophistication of cancer chemotherapy employing nanomedicines.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Nanomedicina , Nanopartículas/química , Neoplasias/patologia , Permeabilidade , Polímeros/química
2.
Drug Deliv ; 28(1): 542-549, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33685317

RESUMO

We developed a biocompatible splenic vector for a DNA vaccine against melanoma. The splenic vector is a ternary complex composed of plasmid DNA (pDNA), biodegradable dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid (γ-PGA), the selective uptake of which by the spleen has already been demonstrated. The ternary complex containing pDNA encoding luciferase (pCMV-Luc) exhibited stronger luciferase activity for RAW264.7 mouse macrophage-like cells than naked pCMV-Luc. Although the ternary complex exhibited strong luciferase activity in the spleen after its tail vein injection, luciferase activity in the liver and spleen was significantly decreased by a pretreatment with clodronate liposomes, which depleted macrophages in the liver and spleen. These results indicate that the ternary complex is mainly transfected in macrophages and is a suitable formulation for DNA vaccination. We applied the ternary complex to a pUb-M melanoma DNA vaccine. The ternary complex containing pUb-M suppressed the growth of melanoma and lung metastasis by B16-F10 mouse melanoma cells. We also examined the acute and liver toxicities of the pUb-M ternary complex at an excess pDNA dose in mice. All mice survived the injection of the excess amount of the ternary complex. Liver toxicity was negligible in mice injected with the excess amount of the ternary complex. In conclusion, we herein confirmed that the ternary complex was mainly transfected into macrophages in the spleen after its tail vein injection. We also showed the prevention of melanoma metastasis by the DNA vaccine and the safety of the ternary complex.


Assuntos
Vacinas Anticâncer/administração & dosagem , Melanoma Experimental/terapia , Transgenes/genética , Vacinas de DNA/administração & dosagem , Animais , Vacinas Anticâncer/toxicidade , Ácido Clodrônico/administração & dosagem , Ácido Clodrônico/farmacologia , Injeções Intravenosas , Lipossomos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Polilisina/química , Células RAW 264.7 , Baço/metabolismo , Transfecção , Vacinas de DNA/toxicidade
3.
Pharmaceutics ; 12(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545209

RESUMO

The present study investigated a pulmonary delivery system of plasmid DNA (pDNA) and its application to melanoma DNA vaccines. pCMV-Luc, pEGFP-C1, and pZsGreen were used as a model pDNA to evaluate transfection efficacy after inhalation in mice. Naked pDNA and a ternary complex, consisting of pDNA, dendrigraft poly-l-lysine (DGL), and γ-polyglutamic acid (γ-PGA), both showed strong gene expression in the lungs after inhalation. The transgene expression was detected in alveolar macrophage-rich sites by observation using multi-color deep imaging. On the basis of these results, we used pUb-M, which expresses melanoma-related antigens (ubiquitinated murine melanoma gp100 and tyrosinase-related protein 2 (TRP2) peptide epitopes), as DNA vaccine for melanoma. The inhalation of naked pUb-M and its ternary complex significantly inhibited the metastasis of B16-F10 cells, a melanoma cell line, in mice. The levels of the inflammatory cytokines, such as TNF-α, IFN-γ, and IL-6, which enhance Th1 responses, were higher with the pUb-M ternary complex than with naked pUb-M and pEGFP-C1 ternary complex as control. In conclusion, we clarified that the inhalation of naked pDNA as well as its ternary complex are a useful technique for cancer vaccination.

4.
Biol Pharm Bull ; 43(7): 1141-1145, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32378553

RESUMO

In this study, we have developed a theranostic nanocarrier that can emit heat upon the exposure to ultrasound (US) irradiation as well as the generation of a contrast signal that can be detected with ultrasonography. The prepared acoustic nanodroplets (NDs) made with liquid perfluporopentane (PFPn) had an average size of 197.7 ± 3.6 nm in diameter and were stable in vitro for 60 min. US irradiation at 2 W.cm-2 induced phase change of NDs into bubbles in vitro. On the other hand, the intra-tumor injection of NDs in combination with US irradiation induced thermal emission in situ in B16BL6 melanoma tumor implanted into mice and the emission areas have mostly covered the tumor site. Also, the combination between NDs and US irradiation has inhibited the tumor growth. Under this condition, the heat shock protein (HSP70) in tumor was significantly upregulated after 6 h of the treatment of NDs with US. Thus, we have developed a therapeutic system with multiple theranostic modalities composed of acoustic NDs and US irradiation applicable to the tumor treatment on the external surface of the body.


Assuntos
Antineoplásicos/administração & dosagem , Hipertermia Induzida/métodos , Melanoma Experimental/diagnóstico por imagem , Nanopartículas/administração & dosagem , Nanomedicina Teranóstica/métodos , Termografia/métodos , Animais , Feminino , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal/métodos , Som
5.
Biol Pharm Bull ; 42(12): 2038-2044, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554747

RESUMO

In this study, we have prepared perfluorohexane (PFH)-based acoustic nanodroplets (PFH-NDs) and evaluated their theranostic characteristics. Nile Red (NR) was incorporated into PFH-NDs as a model of hydrophobic drugs (NR-PFH-NDs). The mean particle diameters of PFH-NDs and NR-PFH-NDs were 205 ± 1.8 nm and 346.3 ± 6 nm, respectively. There was no significant PFH leakage from PFH-NDs during 90 min incubation at 37°C in the presence of 10% rat serum. The in vitro ultrasonography showed that the phase transition of PFH-NDs from liquid droplets to gassed bubbles could be induced by therapeutic low-intensity ultrasound with a frequency of 1 MHz and an intensity of 5 W/cm2. Irradiation of ultrasound in combination with NR-PFH-NDs enhanced uptake of NR in murine adenocarcinoma cells (C26). After intravenous injection of PFH-NDs to mice, PFH gradually disappeared from blood circulation with an elimination half-life of 43.3 min. Intravenous injection of PFH-NDs also resulted in significant contrast enhancement in the mouse carotid artery upon therapeutic low-intensity ultrasound irradiation. These results suggest the potential of PFH-NDs as a novel contrast agent for further theranostic applications.


Assuntos
Fluorocarbonos/química , Fluorocarbonos/efeitos da radiação , Nanopartículas/química , Adenocarcinoma , Animais , Artérias Carótidas/diagnóstico por imagem , Linhagem Celular Tumoral , Feminino , Fluorocarbonos/sangue , Camundongos Endogâmicos ICR , Nanoestruturas , Ratos , Ratos Wistar , Nanomedicina Teranóstica , Ultrassonografia
6.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 190-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391277

RESUMO

In resting cells, the nuclear factor kappa B (NF-κB) family of transcription factors is stabilized by complexation with the cytoplasmic inhibitor of kappa B alpha (IκBα). Extracellular stimuli, such as tumor necrosis factor alpha (TNFα) or bacterial lipopolysaccharide activate NF-κB through IκBα phosphorylation and ubiquitin-proteasomal degradation. Herein, we developed a novel biosensor, by fusing the monomeric fluorescent protein Kusabira-Orange 2 to IκBα (mKO2-IκBα), to study the dynamics and structure-activity relationship of IκBα degradation. Site-specific deletion studies on the IκBα sequence revealed that the C-terminal PEST domain is required in signal-induced proteasomal degradation of IκBα and functions independently from ankyrin repeats. Using deletion mutants, we show that IκBα ankyrin repeats do not affect IκBα degradability but affect its degradation rate. We demonstrate, by both real-time confocal microscopy and western blot analysis, that the half-life of mKO2-IκBα in response to TNFα is approximately 35 min, which is similar to the half-life of endogenous IκBα. Using this biosensor we also show that selective proteasome inhibitors, such as lactacystin and MG132, inhibit degradation and affect the kinetics of IκBα in a dose-dependent manner. The techniques described here can have a range of possible applications, such as facilitating studies associated with IκBα dynamics and biochemical characteristics, as well as the screening of potential proteasome inhibitors.


Assuntos
Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/fisiologia , Anquirinas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Corantes Fluorescentes , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Proteínas I-kappa B/fisiologia , Proteínas Luminescentes , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Imagem Óptica/métodos , Fosforilação , Engenharia de Proteínas/métodos , Proteólise , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/fisiologia , Ubiquitinação , Proteína Vermelha Fluorescente
7.
Int J Pharm ; 545(1-2): 206-214, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29746998

RESUMO

Radiolabeled antibodies, polyethylene glycol-conjugated (PEGylated) peptides, liposomes, and other materials were investigated as positron-emission tomography (PET) probes. These substances accumulate in tumors but often remain too long in circulation. We investigated the combination of intravenous urokinase injection and its substrate linker as a triggered radioisotope clearance enhancement system to improve imaging contrast. To this end, we synthesized a four-arm PEGylated 64Cu-bombesin analog tetramer with a urokinase substrate linker. In mouse blood, it was almost perfectly cleaved and degraded into smaller radioactive fragments in vitro with urokinase (≥20,000 IU/mL). In mouse blood circulation, ∼50-65% of the probe was rapidly degraded after the urokinase injection and the radioactive fragments were eliminated mainly from the kidney. In contrast, tumor radioactivity levels did not change, and therefore, the tumors were clearly visualized. The tumor/blood ratio, an indicator of imaging contrast, increased 2.5 times, while elimination of the radioisotope from the blood was enhanced. This approach has the potential to improve imaging contrast using various PET probes. It could also shorten the time required to obtain sufficient contrast and decrease patient radiation exposure.


Assuntos
Bombesina/administração & dosagem , Complexos de Coordenação/administração & dosagem , Radioisótopos de Cobre/administração & dosagem , Cobre/química , Polietilenoglicóis/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , Ativador de Plasminogênio Tipo Uroquinase/administração & dosagem , Animais , Bombesina/análogos & derivados , Bombesina/química , Bombesina/farmacocinética , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Radioisótopos de Cobre/química , Humanos , Injeções Intravenosas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/química , Valor Preditivo dos Testes , Neoplasias da Próstata/metabolismo , Proteólise , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
8.
J Control Release ; 266: 301-309, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28987881

RESUMO

Age-related macular degeneration (AMD), in which choroidal neovascularization (CNV) affects the center of the retina (macula), leads to the irreversible visual loss. The intravitreal injection of anti-angiogenesis antibodies improved the prognosis of AMD, but relatively less invasive therapies should be explored. In the present study, we show that a high-density lipoprotein (HDL) mutant is a therapeutically active drug carrier capable of treating a posterior eye disease in mice via instillation. Various HDL mutants were prepared with apoA-I proteins fused with different cell-penetrating peptides (CPPs) and phospholipids with different alkyl chain lengths; their sizes were further controlled in the range of 10-25nm. They were screened based on the efficiency of fluorescent dye delivery to the inner retinal layer in mice. The best mutant was found to have penetratin (PEN) as a CPP, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and a size of 15nm. In preclinical studies on a laser-induced CNV murine model, 1week of instillation of the best mutant carrying the anti-angiogenesis drug pazopanib had dramatic therapeutic effects in reducing the CNV size. Importantly, the HDL mutant by itself contributed to the therapeutic effects. Future clinical trials for treating AMD with instillation of the HDL mutant are expected.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , Neovascularização de Coroide/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Lipoproteínas HDL/administração & dosagem , Soluções Oftálmicas/administração & dosagem , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Apolipoproteína A-I/genética , Cumarínicos/administração & dosagem , Indazóis , Lipoproteínas HDL/genética , Lipossomos , Masculino , Camundongos Endogâmicos C57BL , Mutação , Nanopartículas/administração & dosagem , Tiazóis/administração & dosagem
9.
Biol Pharm Bull ; 40(4): 540-545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381810

RESUMO

Glycosaminoglycans (GAGs) play important roles in various biological processes such as cell adhesion and signal transduction, as well as promote anti-inflammatory activity. We previously revealed that glycol-split heparin (HP)-aliphatic amine conjugates form self-assembled nanoparticles and suppress the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß in lipopolysaccharide (LPS)-stimulated macrophages much more strongly than native HP (J. CONTROL: Release, 194, 2014, Babazada et al.). Considering that HP is not the only GAG to have anti-inflammatory activity, the present study was initiated to examine whether conjugation of GAGs with aliphatic amines is generally effective in their activity augmentation against LPS-stimulated macrophages. We newly synthesized the stearylamine conjugates of chondroitin sulfate (CS), hyaluronic acid (HA), and low-molecular-weight heparin (LH), and investigated the effect of the position and degree of sulfation and molecular weight of GAGs on their anti-inflammatory activity. All of the conjugates formed self-assembled nanoparticles in aqueous solution. The IC50 value for suppression of TNF-α production from the macrophages was the smallest with the derivative of LH, followed by HP, CS, and HA. The degree of sulfation appeared to be important in determining their anti-inflammatory activity, which would correspond to previous results using the derivatives of site-selectively desulfated HP. Comparison of HP and LH derivatives revealed that fractionated smaller heparin has greater anti-inflammatory activity.


Assuntos
Aminas/farmacologia , Anti-Inflamatórios/farmacologia , Glicosaminoglicanos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/metabolismo , Aminas/química , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Glicóis/química , Glicóis/farmacologia , Glicosaminoglicanos/química , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos
10.
Drug Deliv ; 24(1): 320-327, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28165819

RESUMO

In this study, stable nano-sized bubbles (nanobubbles [NBs]) were produced using the mechanical agitation method in the presence of perfluorocarbon gases. NBs made with perfluoropropane had a smaller size (around 400 nm) compared to that of those made with perfluorobutane or nitrogen gas. The lipid concentration in NBs affected both their initial size and post-formulation stability. NBs formed with a final lipid concentration of 0.5 mg/ml tended to be more stable, having a uniform size distribution for 24 h at room temperature and 50 h at 4 °C. In vitro gene expression revealed that NBs/pDNA in combination with ultrasound (US) irradiation had significantly higher transfection efficacy in colon C26 cells. Moreover, for in vivo gene transfection in mice left limb muscles, there was notable local transfection activity by NBs/pDNA when combined with US irradiation. In addition, the aged NBs kept at room temperature or 4 °C were still functional at enhancing gene transfection in mice. We succeeded in preparing stable NBs for efficient in vivo gene transfection, using the mechanical agitation method.


Assuntos
DNA/química , Fluorocarbonos/química , Fenômenos Mecânicos , Nanopartículas/química , Transfecção/métodos , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , DNA/administração & dosagem , Feminino , Fluorocarbonos/administração & dosagem , Terapia Genética/métodos , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Tamanho da Partícula , Plasmídeos/administração & dosagem , Plasmídeos/química
11.
Mol Pharm ; 14(5): 1528-1537, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28191842

RESUMO

Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.


Assuntos
Selectina E/química , Células Endoteliais/metabolismo , Lipossomos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipossomos/metabolismo , Simulação de Dinâmica Molecular
12.
Chembiochem ; 18(10): 951-959, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28198587

RESUMO

Two features of meso-Aryl-substituted expanded porphyrins suggest suitability as theranostic agents. They have excellent absorption in near infrared (NIR) region, and they offer the possibility of introduction of multiple fluorine atoms at structurally equivalent positions. Here, hexaphyrin (hexa) was synthesized from 2,6-bis(trifluoromethyl)-4-formyl benzoate and pyrrole and evaluated as a novel expanded porphyrin with the above features. Under NIR illumination hexa showed intense photothermal and weak photodynamic effects, which were most likely due to its low excited states, close to singlet oxygen. The sustained photothermal effect caused ablation of cancer cells more effectively than the photodynamic effect of indocyanine green (a clinical dye). In addition, hexa showed potential for use in the visualization of tumors by 19 F magnetic resonance imaging (MRI), because of the multiple fluorine atoms. Our results strongly support the utility of expanded porphyrins as theranostic agents in both photothermal therapy and 19 F MRI.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Hipertermia Induzida , Fototerapia , Porfirinas/química , Neoplasias da Bexiga Urinária/terapia , Sobrevivência Celular , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Nanomedicina Teranóstica , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
13.
J Pharm Sci ; 106(3): 792-802, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989368

RESUMO

Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical fields including application for drug delivery system. In this study, we developed a novel gene delivery system employing SWCNTs associated with polycationic and amphiphilic H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] peptides having pegylation. SWCNTs wrapped with (KWKG)7 formed a complex with plasmid DNA (pDNA) in aqueous solution based on polyionic interaction but later underwent aggregation. On the other hand, a complex of pDNA and SWCNT-(KWKG)7 modified with polyethylene glycol (PEG) chains of 12 units [SWCNT-(KWKG)7-(PEG)12] afforded good dispersion stability for 24 h even in a cell culture medium. The in vitro cellular uptake of SWCNT-(KWKG)7-(PEG)12/pDNA complex prepared with fluorescence-labeled pDNA was evaluated with fluorescent microscopic observation and flow cytometry. The uptake by A549 human lung adenocarcinoma epithelial cells increased along with the extent of pegylation, suggesting the importance of dispersion stability in addition to the cationic charge which facilitates ionic cellular interaction. The expression of pDNA encoding the monomeric Kusabira-Orange 2 fluorescent protein in the form of the SWCNT-(KWKG)7-(PEG)12/pDNA complex demonstrated remarkable enhancement of transfection depending also on the extent of pegylation and the N/P ratio. The potential of the SWCNT composite wrapped with polycationic and amphiphilic (KWKG)7 with pegylation as a carrier for gene delivery was demonstrated.


Assuntos
Técnicas de Transferência de Genes , Nanotubos de Carbono/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Polietilenoglicóis/química , Células A549 , Eletroforese em Gel Bidimensional/métodos , Humanos , Fragmentos de Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem
14.
Biol Pharm Bull ; 39(10): 1687-1693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725447

RESUMO

A novel sustained release formulation of mitomycin C (MMC) was developed by employing single-walled carbon nanotubes (SWCNTs) wrapped by designed peptide with polyethylene glycol (PEG) modification (pegylation) as a nano-scale molecular platform. The amino groups of polycationic and amphiphilic H-(-Cys-Trp-Lys-Gly-)(-Lys-Trp-Lys-Gly-)6-OH [CWKG(KWKG)6] peptide associated with SWCNTs were modified using PEG with 12 units (PEG12) to improve the dispersion stability of the composite. Then thiol groups of peptide were conjugated with MMC using N-ε-maleimidocaproic acid (EMCA) as a linker via transformation of aziridine group of MMC. The obtained SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC composites particularly that with 13.6% PEG modification extent of amino groups, showed good dispersion stability both in water and in a cell culture medium for 24 h. The release of MMC from SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC was confirmed to follow first-order kinetics being accelerated by the pH increase in good agreement with the results observed for MMC-dextran conjugate with the same conjugation structure. The SWCNTs-CWKG(KWKG)6-(PEG)12 composite exhibited a considerably low cytotoxicity against cultured human lung adenocarcinoma epithelial cell line (A549). In contrast, SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC demonstrated delayed but relatively corresponding antitumor activity with free MMC at the same concentration. The results suggested the potential role of SWCNTs-CWKG(KWKG)6-(PEG)12 as a carrier for a controlled release drug delivery system (DDS).


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Mitomicina/administração & dosagem , Nanotubos de Carbono , Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Células A549 , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Humanos , Mitomicina/química , Mitomicina/farmacologia , Nanotubos de Carbono/química , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
15.
Biol Pharm Bull ; 39(10): 1734-1738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725454

RESUMO

We previously developed a negatively charged amino acid dendrimer to address the safety concerns associated with the constituent unit of these systems, which resulted in the formation of a sixth-generation glutamic acid-modified dendritic poly(L-lysine) system (KG6E). The aim of this study was to develop a nanocarrier for targeted drug delivery into cancer cells. In this study, we have synthesized a conjugate material consisting of anti-mucin 1 (MUC1) aptamer (anti-MUC1 apt) and KG6E (anti-MUC1 apt/KG6E) for targeted drug delivery to human lung adenocarcinoma A549 cells, which express high levels of the MUC1. The anti-MUC1 apt/KG6E was efficiently internalized by the A549 cells and subsequently transported to the endosomal and lysosomal compartments. In contrast, the cellular association of the sequence scrambled aptamer/KG6E conjugate (scrambled apt/KG6E) was much lower than that of the anti-MUC1 apt/KG6E in A549 cells. These results suggest that our newly developed anti-MUC1 apt/KG6E can be internalized in A549 cells via a MUC1 recognition pathway.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Dendrímeros/administração & dosagem , Sistemas de Liberação de Medicamentos , Mucina-1/metabolismo , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Aptâmeros de Nucleotídeos/química , Dendrímeros/química , Ácido Glutâmico/química , Humanos , Neoplasias Pulmonares/metabolismo , Polilisina/química
16.
J Pharm Sci ; 105(7): 2222-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27262201

RESUMO

The aim of this study was to develop an in silico prediction system to assess which of 7 categories of drug transporters (organic anion transporting polypeptide [OATP] 1B1/1B3, multidrug resistance-associated protein [MRP] 2/3/4, organic anion transporter [OAT] 1, OAT3, organic cation transporter [OCT] 1/2/multidrug and toxin extrusion [MATE] 1/2-K, multidrug resistance protein 1 [MDR1], and breast cancer resistance protein [BCRP]) can recognize compounds as substrates using its chemical structure alone. We compiled an internal data set consisting of 260 compounds that are substrates for at least 1 of the 7 categories of drug transporters. Four physicochemical parameters (charge, molecular weight, lipophilicity, and plasma unbound fraction) of each compound were used as the basic descriptors. Furthermore, a greedy algorithm was used to select 3 additional physicochemical descriptors from 731 available descriptors. In addition, transporter nonsubstrates tend not to be in the public domain; we, thus, tried to compile an expert-curated data set of putative nonsubstrates for each transporter using personal opinions of 11 researchers in the field of drug transporters. The best prediction was finally achieved by a support vector machine based on 4 basic and 3 additional descriptors. The model correctly judged that 364 of 412 compounds (internal data set) and 111 of 136 compounds (external data set) were substrates, indicating that this model performs well enough to predict the specificity of transporter substrates.


Assuntos
Proteínas de Transporte/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Máquina de Vetores de Suporte , Algoritmos , Transporte Biológico , Simulação por Computador , Lipídeos/química , Peso Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Valor Preditivo dos Testes , Especificidade por Substrato
17.
Mol Pharm ; 13(8): 2867-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27336683

RESUMO

To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury.


Assuntos
Cisteína/química , Dendrímeros/química , Dendrímeros/uso terapêutico , Lisina/química , Polietilenoglicóis/química , Traumatismo por Reperfusão/prevenção & controle , Compostos de Sulfidrila/química , Compostos de Sulfidrila/uso terapêutico , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
18.
J Pharm Sci ; 105(9): 2815-2824, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179670

RESUMO

Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical applications including drug and gene delivery. In this study, we developed a novel delivery system using SWCNTs associated with designed polycationic and amphiphilic peptides. Wrapping of SWCNTs with H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] resulted in stable dispersion in water, but the composite aggregated in the buffered solution. This dispersion instability was also evident in a cell culture medium with fetal bovine serum. To improve the aqueous dispersibility, the SWCNTs-(KWKG)7 composite was further modified with polyethylene glycol (PEG) at the lysine residues via amide bond formation and the highest modification extent of 13.3% of the amino groups which corresponded to 2 PEG chains in each peptide molecule was achieved with fluorescein isothiocyanate-labeled carboxyl-PEG12. The uptake of the SWCNTs composite by A549 human lung adenocarcinoma epithelial cells was evaluated by visual observation and fluorescence activated cell sorting analysis for SWCNTs wrapped with a mixture of (KWKG)7 with PEGylation and H-(-Cys-Trp-Lys-Gly-)-OH-(KWKG)6 [CWKG(KWKG)6] labeled with fluorescent boron-dipyrromethene tetramethylrhodamine and 7-fold higher uptake comparing with SWCNTs-peptide composite without PEGylation was obtained suggesting the importance of dispersibility in addition to a cationic charge. The superior potential of SWCNTs composites assisted by polycationic and amphiphilic peptides with PEGylation was thus demonstrated.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Nanotubos de Carbono/química , Peptídeos/química , Peptídeos/toxicidade , Células A549 , Amidas/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dipeptídeos , Excipientes , Humanos , Lisina/química , Nanotubos de Carbono/toxicidade , Oligopeptídeos , Polietilenoglicóis/química
19.
Cancer Sci ; 107(3): 217-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26707839

RESUMO

We previously developed novel liposomal nanobubbles (Bubble liposomes [BL]) that oscillate and collapse in an ultrasound field, generating heat and shock waves. We aimed to investigate the feasibility of cancer therapy using the combination of BL and ultrasound. In addition, we investigated the anti-tumor mechanism of this cancer therapy. Colon-26 cells were inoculated into the flank of BALB/c mice to induce tumors. After 8 days, BL or saline was intratumorally injected, followed by transdermal ultrasound exposure of tumor tissue (1 MHz, 0-4 W/cm2 , 2 min). The anti-tumor effects were evaluated by histology (necrosis) and tumor growth. In vivo cell depletion assays were performed to identify the immune cells responsible for anti-tumor effects. Tumor temperatures were significantly higher when treated with BL + ultrasound than ultrasound alone. Intratumoral BL caused extensive tissue necrosis at 3-4 W/cm2 of ultrasound exposure. In addition, BL + ultrasound significantly suppressed tumor growth at 2-4 W/cm2 . In vivo depletion of CD8+ T cells (not NK or CD4+ T cells) completely blocked the effect of BL + ultrasound on tumor growth. These data suggest that CD8+ T cells play a critical role in tumor growth suppression. Finally, we concluded that BL + ultrasound, which can prime the anti-tumor cellular immune system, may be an effective hyperthermia strategy for cancer treatment.


Assuntos
Hipertermia Induzida , Nanopartículas/uso terapêutico , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Feminino , Imunidade Celular , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Carga Tumoral , Ondas Ultrassônicas
20.
Int J Pharm ; 487(1-2): 64-71, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25841568

RESUMO

Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier.


Assuntos
Fluorocarbonos/administração & dosagem , Lipossomos/química , Microbolhas , Meios de Contraste , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fluorocarbonos/química , Gases/administração & dosagem , Tamanho da Partícula , Fosfolipídeos/química , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA