Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Microbiol ; 15: 1344857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803374

RESUMO

Mycobacterium tuberculosis (M. tb) genome encompasses 4,173 genes, about a quarter of which remain uncharacterized and hypothetical. Considering the current limitations associated with the diagnosis and treatment of tuberculosis, it is imperative to comprehend the pathomechanism of the disease and host-pathogen interactions to identify new drug targets for intervention strategies. Using in-silico comparative genome analysis, we identified one of the M. tb genes, Rv1509, as a signature protein exclusively present in M. tb. To explore the role of Rv1509, a likely methyl transferase, we constructed a knock-in Mycobacterium smegmatis (M. smegmatis) constitutively expressing Rv1509 (Ms_Rv1509). The Ms_Rv1509 led to differential expression of many transcriptional regulator genes as assessed by RNA-seq analysis. Further, in-vitro and in-vivo studies demonstrated an enhanced survival of Ms_Rv1509 inside the host macrophages. Ms_Rv1509 also promoted phagolysosomal escape inside macrophages to boost bacterial replication and dissemination. In-vivo infection studies revealed that Ms_Rv1509 survives better than BCG and causes pathological manifestations in the pancreas after intraperitoneal infection. Long-time survival of Ms_Rv1509 resulted in lymphocyte migration, increased T regulatory cells, giant cell formation, and likely granuloma formation in the pancreas, pointing toward the role of Rv1509 in M. tb pathogenesis.

2.
Biochem J ; 480(14): 1079-1096, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306466

RESUMO

Mycobacterium tuberculosis (M. tb), the causative pathogen of tuberculosis (TB) remains the leading cause of death from single infectious agent. Furthermore, its evolution to multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains necessitate de novo identification of drug-targets/candidates or to repurpose existing drugs against known targets through drug repurposing. Repurposing of drugs has gained traction recently where orphan drugs are exploited for new indications. In the current study, we have combined drug repurposing with polypharmacological targeting approach to modulate structure-function of multiple proteins in M. tb. Based on previously established essentiality of genes in M. tb, four proteins implicated in acceleration of protein folding (PpiB), chaperone assisted protein folding (MoxR1), microbial replication (RipA) and host immune modulation (S-adenosyl dependent methyltransferase, sMTase) were selected. Genetic diversity analyses in target proteins showed accumulation of mutations outside respective substrate/drug binding sites. Using a composite receptor-template based screening method followed by molecular dynamics simulations, we have identified potential candidates from FDA approved drugs database; Anidulafungin (anti-fungal), Azilsartan (anti-hypertensive) and Degarelix (anti-cancer). Isothermal titration calorimetric analyses showed that the drugs can bind with high affinity to target proteins and interfere with known protein-protein interaction of MoxR1 and RipA. Cell based inhibitory assays of these drugs against M. tb (H37Ra) culture indicates their potential to interfere with pathogen growth and replication. Topographic assessment of drug-treated bacteria showed induction of morphological aberrations in M. tb. The approved candidates may also serve as scaffolds for optimization to future anti-mycobacterial agents which can target MDR strains of M. tb.


Assuntos
Antituberculosos , Reposicionamento de Medicamentos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Anidulafungina/farmacologia , Proteínas de Bactérias/genética , Estrutura Terciária de Proteína , Simulação de Dinâmica Molecular
3.
Autophagy ; 19(1): 3-23, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35000542

RESUMO

Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Mycobacterium tuberculosis , Ubiquitina , Autofagia/fisiologia , Proteínas de Transporte , Imunidade , Mycobacterium tuberculosis/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Front Mol Biosci ; 9: 906387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813825

RESUMO

Mycobacterium tuberculosis (M. tb) gene Rv1515c encodes a conserved hypothetical protein exclusively present within organisms of MTB complex and absent in non-pathogenic mycobacteria. In silico analysis revealed that Rv1515c contain S-adenosylmethionine binding site and methyltransferase domain. The DNA binding and DNA methyltransferase activity of Rv1515c was confirmed in vitro. Knock-in of Rv1515c in a model mycobacteria M. smegmatis (M. s_Rv1515c) resulted in remarkable physiological and morphological changes and conferred the recombinant strain with an ability to adapt to various stress conditions, including resistance to TB drugs. M. s_Rv1515c was phagocytosed at a greater rate and displayed extended intra-macrophage survival in vitro. Recombinant M. s_Rv1515c contributed to enhanced virulence by suppressing the host defense mechanisms including RNS and ROS production, and apoptotic clearance. M. s_Rv1515c, while suppressing the phagolysosomal maturation, modulated pro-inflammatory cytokine production and also inhibited antigen presentation by downregulating the expression of MHC-I/MHC-II and co-stimulatory signals CD80 and CD86. Mice infected with M. s_Rv1515c produced more Treg cells than vector control (M. s_Vc) and exhibited reduced effector T cell responses, along-with reduced expression of macrophage activation markers in the chronic phase of infection. M. s_Rv1515c was able to survive in the major organs of mice up to 7 weeks post-infection. These results indicate a crucial role of Rv1515c in M. tb pathogenesis.

5.
Int J Med Microbiol ; 312(5): 151558, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35842995

RESUMO

Infections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), has been reported to predispose patients to lung cancers and possibly in other organs as well. While this etiopathogenesis warrant inclusion of M. tb in IARC's (International Agency for Research on Cancer) classified carcinogenic agents, the lack of well-defined literature and direct experimental studies have barred the research community from accepting the role of M. tb as a carcinogen. The background research, case studies, and experimental data extensively reviewed in Roy et al., 2021; provoke the debate for elucidating carcinogenic properties of M. tb. Moreover, proper, timely and correct diagnosis of both diseases (which often mimic each other) will save millions of lives that are misdiagnosed. In addition, use of Anti Tubercular therapy (ATT) in misdiagnosed non-TB patients contributes to drug resistance in population thereby severely impacting TB disease control measures. Research in this arena can further aid in saving billions of dollars by preventing the superfluous use of cancer drugs. In order to achieve these goals, it is imperative to identify the underlying mechanism of M. tb infection acting as major risk factor for cancer.


Assuntos
Helicobacter pylori , Mycobacterium tuberculosis , Neoplasias , Tuberculose , Antituberculosos/uso terapêutico , Humanos , Neoplasias/complicações , Neoplasias/epidemiologia , Tuberculose/complicações , Tuberculose/diagnóstico , Tuberculose/epidemiologia
6.
J Cancer Res Clin Oncol ; 148(7): 1641-1682, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441887

RESUMO

PURPOSE: The mechanisms contributing to recurrence of glioblastoma (GBM), an aggressive neuroepithelial brain tumor, remain unknown. We have recently shown that nuclear respiratory factor 1 (NRF1) is an oncogenic transcription factor and its transcriptional activity is associated with the progression and prognosis of GBM. Herein, we extend our efforts to (1) identify influential NRF1-driven gene and microRNA (miRNA) expression for the aggressiveness of mesenchymal GBM; and (2) understand the molecular basis for its poor response to therapy. METHODS: Clinical data and RNA-Seq from four independent GBM cohorts were analyzed by Bayesian Network Inference with Java Objects (BANJO) and Markov chain Monte Carlo (MCMC)-based gene order to identify molecular drivers of mesenchymal GBM as well as prognostic indicators of poor response to radiation and chemotherapy. RESULTS: We are the first to report sex-specific NRF1 motif enriched gene signatures showing increased susceptibility to GBM. Risk estimates for GBM were increased by greater than 100-fold with the joint effect of NRF1-driven gene signatures-CDK4, DUSP6, MSH2, NRF1, and PARK7 in female GBM patients and CDK4, CASP2, H6PD, and NRF1 in male GBM patients. NRF1-driven causal Bayesian network genes were predictive of poor survival and resistance to chemoradiation in IDH1 wild-type mesenchymal GBM patients. NRF1-regulatable miRNAs were also associated with poor response to chemoradiation therapy in female IDH1 wild-type mesenchymal GBM. Stable overexpression of NRF1 reprogramed human astrocytes into neural stem cell-like cells expressing SOX2 and nestin. These cells differentiated into neurons and form tumorospheroids. CONCLUSIONS: In summary, our novel discovery shows that NRF1-driven causal genes and miRNAs involved in cancer cell stemness and mesenchymal features contribute to cancer aggressiveness and recurrence of aggressive therapy-resistant glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Fator 1 Nuclear Respiratório , Teorema de Bayes , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Fator 1 Nuclear Respiratório/genética , Prognóstico , Transcriptoma
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008950

RESUMO

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças/imunologia , Glicina/metabolismo , Humanos , Evasão da Resposta Imune , Imunomodulação , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Virulência
8.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502303

RESUMO

Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/crescimento & desenvolvimento , Conformação Proteica , Homologia de Sequência
9.
Front Immunol ; 12: 696491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322125

RESUMO

Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that exploits moonlighting functions of its proteins to interfere with host cell functions. PE/PPE proteins utilize host inflammatory signaling and cell death pathways to promote pathogenesis. We report that M. tb PE6 protein (Rv0335c) is a secretory protein effector that interacts with innate immune toll-like receptor TLR4 on the macrophage cell surface and promotes activation of the canonical NFĸB signaling pathway to stimulate secretion of proinflammatory cytokines TNF-α, IL-12, and IL-6. Using mouse macrophage TLRs knockout cell lines, we demonstrate that PE6 induced secretion of proinflammatory cytokines dependent on TLR4 and adaptor Myd88. PE6 possesses nuclear and mitochondrial targeting sequences and displayed time-dependent differential localization into nucleus/nucleolus and mitochondria, and exhibited strong Nucleolin activation. PE6 strongly induces apoptosis via increased production of pro-apoptotic molecules Bax, Cytochrome C, and pcMyc. Mechanistic details revealed that PE6 activates Caspases 3 and 9 and induces endoplasmic reticulum-associated unfolded protein response pathways to induce apoptosis through increased production of ATF6, Chop, BIP, eIF2α, IRE1α, and Calnexin. Despite being a potent inducer of apoptosis, PE6 suppresses innate immune defense strategy autophagy by inducing inhibitory phosphorylation of autophagy initiating kinase ULK1. Inversely, PE6 induces activatory phosphorylation of autophagy master regulator MtorC1, which is reflected by lower conversion of autophagy markers LC3BI to LC3BII and increased accumulation of autophagy substrate p62 which is also dependent on innate immune receptor TLR4. The use of pharmacological agents, rapamycin and bafilomycin A1, confirms the inhibitory effect of PE6 on autophagy, evidenced by the reduced conversion of LC3BI to LC3BII and increased accumulation of p62 in the presence of rapamycin and bafilomycin A1. We also observed that PE6 binds DNA, which could have significant implications in virulence. Furthermore, our analyses reveal that PE6 efficiently binds iron to likely aid in intracellular survival. Recombinant Mycobacterium smegmatis (M. smegmatis) containing pe6 displayed robust growth in iron chelated media compared to vector alone transformed cells, which suggests a role of PE6 in iron acquisition. These findings unravel novel mechanisms exploited by PE6 protein to subdue host immunity, thereby providing insights relevant to a better understanding of host-pathogen interaction during M. tb infection.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Infecções por Mycobacterium/metabolismo , Receptor 4 Toll-Like/agonistas , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células RAW 264.7 , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo
10.
Front Cell Infect Microbiol ; 11: 622487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777836

RESUMO

The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Resistência a Medicamentos , Humanos , Imunidade , Macrófagos/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo
11.
Front Immunol ; 12: 636644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746976

RESUMO

Reductive evolution has endowed Mycobacterium tuberculosis (M. tb) with moonlighting in protein functions. We demonstrate that RipA (Rv1477), a peptidoglycan hydrolase, activates the NFκB signaling pathway and elicits the production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12, through the activation of an innate immune-receptor, toll-like receptor (TLR)4. RipA also induces an enhanced expression of macrophage activation markers MHC-II, CD80, and CD86, suggestive of M1 polarization. RipA harbors LC3 (Microtubule-associated protein 1A/1B-light chain 3) motifs known to be involved in autophagy regulation and indeed alters the levels of autophagy markers LC3BII and P62/SQSTM1 (Sequestosome-1), along with an increase in the ratio of P62/Beclin1, a hallmark of autophagy inhibition. The use of pharmacological agents, rapamycin and bafilomycin A1, reveals that RipA activates PI3K-AKT-mTORC1 signaling cascade that ultimately culminates in the inhibition of autophagy initiating kinase ULK1 (Unc-51 like autophagy activating kinase). This inhibition of autophagy translates into efficient intracellular survival, within macrophages, of recombinant Mycobacterium smegmatis expressing M. tb RipA. RipA, which also localizes into mitochondria, inhibits the production of oxidative phosphorylation enzymes to promote a Warburg-like phenotype in macrophages that favors bacterial replication. Furthermore, RipA also inhibited caspase-dependent programed cell death in macrophages, thus hindering an efficient innate antibacterial response. Collectively, our results highlight the role of an endopeptidase to create a permissive replication niche in host cells by inducing the repression of autophagy and apoptosis, along with metabolic reprogramming, and pointing to the role of RipA in disease pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/imunologia , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Autofagia , Proteínas de Bactérias/genética , Diferenciação Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Imunomodulação , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais
12.
Autophagy ; 17(3): 814-817, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33190592

RESUMO

Innate immune signaling and xenophagy are crucial innate defense strategies exploited by the host to counteract intracellular pathogens with ubiquitination as a critical regulator of these processes. These pathogens, including Mycobacterium tuberculosis (M. tb), co-opt the host ubiquitin machinery by utilizing secreted or cell surface effectors to dampen innate host defenses. Inversely, the host utilizes ubiquitin ligase-mediated ubiquitination of intracellular pathogens and recruits autophagy receptors to induce xenophagy. In the current article, we discuss the co-option of the ubiquitin pathway by the M. tb virulence effectors.Abbreviations: ANAPC2: anaphase promoting complex subunit 2; IL: interleukin; Lys: lysine (K); MAPK: mitogen-activated protein kinase; MAP3K7/TAK1; mitogen-activated protein kinase kinase kinase 7; M. tb: Mycobacterium tuberculosis; NFKB/NF-κB: nuclear factor kappa B subunit; PtpA: protein tyrosine phosphatase; SQSTM1/p62: sequestosome 1; V-ATPase: vacuolar-type H+-ATPase; UBA: a eukaryotic-like ubiquitin-associated domain.


Assuntos
Autofagia/fisiologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tuberculose/metabolismo , Humanos , Mycobacterium tuberculosis/metabolismo , Ubiquitinação/fisiologia
13.
Prog Biophys Mol Biol ; 156: 34-42, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32628954

RESUMO

Intrinsic disorder in proteins resulting in considerable variation in structure can lead to multiple functions including multi-specificity and diverse pathologies. Protein interfaces can involve disordered regions that assemble through a concerted-fold-and-bind mechanism. The binding involves both enthalpic and entropic gains by exploiting 'hot spots' on the partner and displacing water molecules placed in thermodynamically unfavorable situations. The examples of Rad51-BRCA2 and Artemis-DNA-PKCs/LigIV complexes illustrate this in the context of drug design. This overview tracks the seamless involvement of protein disorder in multi-specificity of biocatalysts, protein assembly formations and host-pathogen interactions, where intrinsic disorder can in Mycobacteria, compensate for genome reduction by carrying out multiple functions and in some RNA viruses facilitate adaption to the host. These present challenging opportunities for designing new drugs and interventions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Desenho de Fármacos , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis , Motivos de Aminoácidos , Proteína BRCA2/química , Catálise , Proteínas de Ligação a DNA/química , Endonucleases/química , Genoma , Humanos , Proteínas Intrinsicamente Desordenadas , Ligação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteína Quinase C/química , Rad51 Recombinase/química , Termodinâmica , Água/química
14.
J Cancer Res Clin Oncol ; 146(11): 2777-2815, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32705365

RESUMO

PURPOSE: Nuclear respiratory factor 1 (NRF1) drives estrogen-dependent breast tumorigenesis. Herein we examined the impact of NRF1 activity on the aggressiveness and disparate molecular signature of breast cancer in Black, White, Asian, and Hispanic women. METHODS: NRF1 activity by transcription factor target enrichment analysis and causal NRF1-target gene signatures by Bayesian Network Inference with Java Objects (BANJO) and Markov Chain Monte Carlo (MCMC)-based gene order were examined in The Cancer Genome Atlas (TCGA) breast cancer cohorts. RESULTS: We are the first to report increased NRF1 activity based on its differential effects on genome-wide transcription associated with luminal A and B, HER2+ and triple-negative (TN) molecular subtypes of breast cancer in women of different race/ethnicity. We observed disparate NRF1 motif-containing causal gene signatures unique to Black, White, Asian, and Hispanic women for luminal A breast cancer. Further gene order searches showed molecular heterogeneity of each subtype of breast cancer. Six different gene order sequences involving CDK1, HMMR, CCNB2, CCNB1, E2F1, CREB3L4, GTSE1, and LMNB1 with almost equal weight predicted the probability of luminal A breast cancer in whites. Three different gene order sequences consisting of CCNB1 and GTSE1, and CCNB1, LMNB1, CDK1 or CASP3 predicted almost 100% probability of luminal B breast cancer in whites; CCNB1 and LMNB1 or GTSE predicted 100% HER2+ breast cancer in whites. GTSE1 and TUBA1C combined together predicted 100% probability of developing TNBC in whites; NRF1, TUBA1B and BAX with EFNA4, and NRF1 and BTRC predicated 100% TNBC in blacks. High expressor NRF1 TN breast tumors showed unfavorable prognosis with a high risk of breast cancer death in white women. CONCLUSION: Our findings showed how sensitivity to high NRF1 transcriptional activity coupled with its target gene signatures contribute to racial differences in luminal A and TN breast cancer subtypes. This knowledge may be useful in personalized intervention to prevent and treat this clinically challenging problem.


Assuntos
Neoplasias da Mama/etnologia , Neoplasias da Mama/genética , Fator 1 Nuclear Respiratório/genética , Transcriptoma/genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
15.
Mol Neurobiol ; 57(9): 3827-3845, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32594352

RESUMO

Despite tremendous progress in understanding the pathobiology of astrocytoma, major gaps remain in our knowledge of the molecular basis underlying the aggressiveness of high-grade astrocytoma (glioblastoma - GBM). Recently, we and others have shown nuclear respiratory factor 1 (NRF1) transcription factor being highly active in human cancers, but its role in astrocytoma remains unknown. Therefore, the purpose of this study was to uncover the role of NRF1 in the progression of GBM. NRF1 has higher mRNA expression and transcription factor activity in astrocytoma compared to non-tumor brain tissue. NRF1 activity also correlated with the aggressiveness of cancer. Increased NRF1 TF activity coupled with overexpression of RHOG was associated with poor survival of GBM patients. NRF1 activity was associated with transcriptomic signatures of neurogenesis, cell stemness, epithelial-mesenchymal transition and cell cycle progression. Overexpression of CDK4, AKT1, APAF1, HDAC1, NBN, TGFB1, & TNFRSF1A and downregulation of CASP3, IL7, STXBP1 and OPA1 predicted GBM malignancy in high expressors of NRF1 activity. Increased expression of the NRF1 motif containing genes, H6PD, NAT10, NBEAL2, and RNF19B predicted poor survival of IDH1 wild-type GBM patients. Poor survival outcomes and resistance to Temozolomide therapy were associated with higher NRF1 expression including its targets - LDHA, ZMAT3, NSUN2, ARMC5, NDEL1, CLPTM1L, ALKBH5, YIPF5, PPP2CA, and TFG. These findings suggest that aberrant NRF1 activity may contribute to the pathogenesis of GBM and severity of astrocytoma. Further analyses of NRF1 gene signatures will pave the way for next generation targeted therapies and drug combination strategies for GBM patients.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Fator 1 Nuclear Respiratório/metabolismo , Índice de Gravidade de Doença , Transcrição Gênica , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Astrocitoma/patologia , Astrocitoma/fisiopatologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Estudos de Coortes , Quinase 4 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Humanos , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fator 1 Nuclear Respiratório/genética , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Resultado do Tratamento
17.
mBio ; 9(3)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921671

RESUMO

The genome of Mycobacterium tuberculosis, the causal organism of tuberculosis (TB), encodes a unique protein family known as the PE/PPE/PGRS family, present exclusively in the genus Mycobacterium and nowhere else in the living kingdom, with largely unexplored functions. We describe the functional significance of the PGRS domain of Rv0297, a member of this family. In silico analyses revealed the presence of intrinsically disordered stretches and putative endoplasmic reticulum (ER) localization signals in the PGRS domain of Rv0297 (Rv0297PGRS). The PGRS domain aids in ER localization, which was shown by infecting macrophage cells with M. tuberculosis and by overexpressing the protein by transfection in macrophage cells followed by activation of the unfolded protein response, as evident from increased expression of GRP78/GRP94 and CHOP/ATF4, leading to disruption of intracellular Ca2+ homeostasis and increased nitric oxide (NO) and reactive oxygen species (ROS) production. The consequent activation of the effector caspase-8 resulted in apoptosis of macrophages, which was Toll-like receptor 4 (TLR4) dependent. Administration of recombinant Rv0297PGRS (rRv0297PGRS) also exhibited similar effects. These results implicate a hitherto-unknown role of the PGRS domain of the PE_PGRS protein family in ER stress-mediated cell death through TLR4. Since this protein is already known to be present at later stages of infection in human granulomas it points to the possibility of it being employed by M. tuberculosis for its dissemination via an apoptotic mechanism.IMPORTANCE Apoptosis is generally thought to be a defense mechanism in protecting the host against Mycobacterium tuberculosis in early stages of infection. However, apoptosis during later stages in lung granulomas may favor the bacterium in disseminating the disease. ER stress has been found to induce apoptosis in TB granulomas, in zones where apoptotic macrophages accumulate in mice and humans. In this study, we report ER stress-mediated apoptosis of host cells by the Rv0297-encoded PE_PGRS5 protein of M. tuberculosis exceptionally present in the pathogenic Mycobacterium genus. The PGRS domain of Rv0297 aids the protein in localizing to the ER and induces the unfolded protein response followed by apoptosis of macrophages. The effect of the Rv0297PGRS domain was found to be TLR4 dependent. This study presents novel insights on the strategies employed by M. tuberculosis to disseminate the disease.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Apoptose , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estresse do Retículo Endoplasmático , Macrófagos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Mycobacterium tuberculosis/patogenicidade , Ligação Proteica , Sinais Direcionadores de Proteínas , Células RAW 264.7 , Receptor 4 Toll-Like/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-28261567

RESUMO

Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses.


Assuntos
Imunidade Adaptativa , Ciclofilina A/metabolismo , Ciclofilinas/metabolismo , Interações Hospedeiro-Patógeno , Viabilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/imunologia , Anticorpos Antibacterianos/sangue , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiologia , Tuberculose/imunologia
19.
Int J Med Microbiol ; 305(3): 322-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648374

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Células-Tronco Mesenquimais/microbiologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA